BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30719868)

  • 1. Multi-ATOM: Ultrahigh-throughput single-cell quantitative phase imaging with subcellular resolution.
    Lee KCM; Lau AKS; Tang AHL; Wang M; Mok ATY; Chung BMF; Yan W; Shum HC; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    J Biophotonics; 2019 Jul; 12(7):e201800479. PubMed ID: 30719868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping.
    Lee KCM; Wang M; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    Cytometry A; 2019 May; 95(5):510-520. PubMed ID: 31012276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspective on quantitative phase imaging to improve precision cancer medicine.
    Liu Y; Uttam S
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22705. PubMed ID: 38584967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
    Tang AHL; Lai QTK; Chung BMF; Lee KCM; Mok ATY; Yip GK; Shum AHC; Wong KKY; Tsia KK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow.
    Wong TT; Lau AK; Ho KK; Tang MY; Robles JD; Wei X; Chan AC; Tang AH; Lam EY; Wong KK; Chan GC; Shum HC; Tsia KK
    Sci Rep; 2014 Jan; 4():3656. PubMed ID: 24413677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.
    Nguyen TL; Pradeep S; Judson-Torres RL; Reed J; Teitell MA; Zangle TA
    ACS Nano; 2022 Aug; 16(8):11516-11544. PubMed ID: 35916417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm.
    Lau AK; Wong TT; Ho KK; Tang MT; Chan AC; Wei X; Lam EY; Shum HC; Wong KK; Tsia KK
    J Biomed Opt; 2014; 19(7):76001. PubMed ID: 24983913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput all-optical laser-scanning imaging flow cytometer with biomolecular specificity and subcellular resolution.
    Yan W; Wu J; Wong KKY; Tsia KK
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 29072813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising live cell behaviour: Traditional label-free and quantitative phase imaging approaches.
    Kasprowicz R; Suman R; O'Toole P
    Int J Biochem Cell Biol; 2017 Mar; 84():89-95. PubMed ID: 28111333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DryMass: handling and analyzing quantitative phase microscopy images of spherical, cell-sized objects.
    Müller P; Cojoc G; Guck J
    BMC Bioinformatics; 2020 Jun; 21(1):226. PubMed ID: 32493205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic aperture interference light (SAIL) microscopy for high-throughput label-free imaging.
    Hu C; Kandel ME; Lee YJ; Popescu G
    Appl Phys Lett; 2021 Dec; 119(23):233701. PubMed ID: 34924588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging.
    Wu Y; Zhou Y; Huang CJ; Kobayashi H; Yan S; Ozeki Y; Wu Y; Sun CW; Yasumoto A; Yatomi Y; Lei C; Goda K
    Opt Express; 2020 Jan; 28(1):519-532. PubMed ID: 32118978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging.
    Hayes-Rounds C; Bogue-Jimenez B; Garcia-Sucerquia J; Skalli O; Doblas A
    J Biomed Opt; 2020 Aug; 25(8):1-11. PubMed ID: 32755077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry.
    Lau AK; Shum HC; Wong KK; Tsia KK
    Lab Chip; 2016 May; 16(10):1743-56. PubMed ID: 27099993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phase microscopy monitors subcellular dynamics in single cells exposed to nanosecond pulsed electric fields.
    Steelman ZA; Coker ZN; Kiester A; Noojin G; Ibey BL; Bixler JN
    J Biophotonics; 2021 Oct; 14(10):e202100125. PubMed ID: 34291579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fringe analysis: single-shot or two-frames? Quantitative phase imaging answers.
    Trusiak M
    Opt Express; 2021 Jun; 29(12):18192-18211. PubMed ID: 34154081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phase imaging through an ultra-thin lensless fiber endoscope.
    Sun J; Wu J; Wu S; Goswami R; Girardo S; Cao L; Guck J; Koukourakis N; Czarske JW
    Light Sci Appl; 2022 Jul; 11(1):204. PubMed ID: 35790748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy.
    Tanwar S; Wu L; Zahn N; Raj P; Ghaemi B; Chatterjee A; Bulte JWM; Barman I
    Nano Lett; 2023 May; 23(10):4602-4608. PubMed ID: 37154678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.