These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 3072019)
1. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase. Chaidaroglou A; Brezinski DJ; Middleton SA; Kantrowitz ER Biochemistry; 1988 Nov; 27(22):8338-43. PubMed ID: 3072019 [TBL] [Abstract][Full Text] [Related]
2. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity. Chaidaroglou A; Kantrowitz ER Protein Eng; 1989 Nov; 3(2):127-32. PubMed ID: 2687845 [TBL] [Abstract][Full Text] [Related]
3. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
4. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Xu X; Kantrowitz ER Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846 [TBL] [Abstract][Full Text] [Related]
5. Enhanced catalysis by active-site mutagenesis at aspartic acid 153 in Escherichia coli alkaline phosphatase. Matlin AR; Kendall DA; Carano KS; Banzon JA; Klecka SB; Solomon NM Biochemistry; 1992 Sep; 31(35):8196-200. PubMed ID: 1525159 [TBL] [Abstract][Full Text] [Related]
6. Use of site-directed mutagenesis to elucidate the role of arginine-166 in the catalytic mechanism of alkaline phosphatase. Butler-Ransohoff JE; Kendall DA; Kaiser ET Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4276-8. PubMed ID: 3288990 [TBL] [Abstract][Full Text] [Related]
7. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis. Xu X; Qin XQ; Kantrowitz ER Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Kuo LC; Miller AW; Lee S; Kozuma C Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
12. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases. Holtz KM; Catrina IE; Hengge AC; Kantrowitz ER Biochemistry; 2000 Aug; 39(31):9451-8. PubMed ID: 10924140 [TBL] [Abstract][Full Text] [Related]
13. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
14. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism. Xu X; Kantrowitz ER Biochemistry; 1993 Oct; 32(40):10683-91. PubMed ID: 8104481 [TBL] [Abstract][Full Text] [Related]
15. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
16. Mutagenesis of conserved residues within the active site of Escherichia coli alkaline phosphatase yields enzymes with increased kcat. Mandecki W; Shallcross MA; Sowadski J; Tomazic-Allen S Protein Eng; 1991 Oct; 4(7):801-4. PubMed ID: 1798702 [TBL] [Abstract][Full Text] [Related]
17. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase. Ma L; Kantrowitz ER J Biol Chem; 1994 Dec; 269(50):31614-9. PubMed ID: 7989332 [TBL] [Abstract][Full Text] [Related]
18. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase. Xu X; Kantrowitz ER J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810 [TBL] [Abstract][Full Text] [Related]
19. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli. Qamar S; Marsh K; Berry A Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208 [TBL] [Abstract][Full Text] [Related]
20. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center. Sun L; Martin DC; Kantrowitz ER Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]