BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 3072022)

  • 1. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation of arginine 57 of Escherichia coli ornithine transcarbamoylase regulates substrate binding and turnover.
    Goldsmith JO; Kuo LC
    J Biol Chem; 1993 Sep; 268(25):18485-90. PubMed ID: 8395503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggering of allostery in an enzyme by a point mutation: ornithine transcarbamoylase.
    Kuo LC; Zambidis I; Caron C
    Science; 1989 Aug; 245(4917):522-4. PubMed ID: 2667139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of L-ornithine specificity in Escherichia coli ornithine transcarbamoylase. Site-directed mutagenic and pH studies.
    Goldsmith JO; Lee S; Zambidis I; Kuo LC
    J Biol Chem; 1991 Oct; 266(28):18626-34. PubMed ID: 1917985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of conformational flexibility in enzyme action-linkage between binding, isomerization, and catalysis.
    Goldsmith JO; Kuo LC
    J Biol Chem; 1993 Sep; 268(25):18481-4. PubMed ID: 8360150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zn2+ regulation of ornithine transcarbamoylase. I. Mechanism of action.
    Lee S; Shen WH; Miller AW; Kuo LC
    J Mol Biol; 1990 Jan; 211(1):255-69. PubMed ID: 2105398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn2+ regulation of ornithine transcarbamoylase. II. Metal binding site.
    Kuo LC; Caron C; Lee S; Herzberg W
    J Mol Biol; 1990 Jan; 211(1):271-80. PubMed ID: 2405164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase.
    Rynkiewicz MJ; Seaton BA
    Biochemistry; 1996 Dec; 35(50):16174-9. PubMed ID: 8973189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase.
    Ngu L; Winters JN; Nguyen K; Ramos KE; DeLateur NA; Makowski L; Whitford PC; Ondrechen MJ; Beuning PJ
    PLoS One; 2020; 15(2):e0228487. PubMed ID: 32027716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-induced isomerizations of Escherichia coli ornithine transcarbamoylase. An ultraviolet difference analysis.
    Miller AW; Kuo LC
    J Biol Chem; 1990 Sep; 265(25):15023-7. PubMed ID: 2203767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity and protonation state of Escherichia coli ornithine transcarbamoylase as determined by pH studies. Binding of carbamoyl phosphate.
    Zambidis I; Kuo LC
    J Biol Chem; 1990 Feb; 265(5):2620-3. PubMed ID: 2154453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the L-ornithine transcarbamoylase from Pseudomonas savastanoi pv. phaseolicola that is resistant to the transition state analogue (R)-N delta-(N'-sulfodiaminophosphinyl)-L-ornithine.
    Templeton MD; Reinhardt LA; Collyer CA; Mitchell RE; Cleland WW
    Biochemistry; 2005 Mar; 44(11):4408-15. PubMed ID: 15766270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase.
    Xu W; Kantrowitz ER
    Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of Arg60 and Cys271 in ornithine transcarbamylase from rat liver.
    McDowall S; van Heeswijck R; Hoogenraad N
    Protein Eng; 1990 Oct; 4(1):73-7. PubMed ID: 2290837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism.
    Sankaranarayanan R; Cherney MM; Cherney LT; Garen CR; Moradian F; James MN
    J Mol Biol; 2008 Jan; 375(4):1052-63. PubMed ID: 18062991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of serine-52 and serine-80 in the catalytic mechanism of Escherichia coli aspartate transcarbamoylase.
    Xu W; Kantrowitz ER
    Biochemistry; 1991 Mar; 30(9):2535-42. PubMed ID: 1900434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity and protonation state of ornithine transcarbamoylase as determined by pH studies.
    Kuo LC; Herzberg W; Lipscomb WN
    Biochemistry; 1985 Aug; 24(18):4754-61. PubMed ID: 3907689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects.
    Tricot C; Villeret V; Sainz G; Dideberg O; Stalon V
    J Mol Biol; 1998 Oct; 283(3):695-704. PubMed ID: 9784377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase.
    Delle Fratte S; Iurescia S; Angelaccio S; Bossa F; Schirch V
    Eur J Biochem; 1994 Oct; 225(1):395-401. PubMed ID: 7925461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.