These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30720284)

  • 1. How Slippery are SLIPS? Measuring Effective Slip on Lubricated Surfaces with Colloidal Probe Atmoc Force Microscopy.
    Scarratt LRJ; Zhu L; Neto C
    Langmuir; 2019 Feb; 35(8):2976-2982. PubMed ID: 30720284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Effective Slip on Lubricated Surfaces Measured with Colloidal Probe AFM.
    Scarratt LRJ; Zhu L; Neto C
    Langmuir; 2020 Jun; 36(21):6033-6040. PubMed ID: 32431146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces.
    Peppou-Chapman S; Neto C
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33669-33677. PubMed ID: 30168715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry.
    Üçüncüoğlu R; Erbil HY
    Langmuir; 2023 May; 39(18):6514-6528. PubMed ID: 37103333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Effects of Lubricant Infusion Methods on Polymer SLIPS.
    Casey M; Dano F; Busch T; Aboud DGK; Kietzig AM
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):37328-37337. PubMed ID: 38954598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and Experimental Characterization of Wrapping Layer Using Planar Laser-Induced Fluorescence.
    Xu H; Herzog JM; Zhou Y; Bashirzadeh Y; Liu A; Adera S
    ACS Nano; 2024 Feb; 18(5):4068-4076. PubMed ID: 38277478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S
    Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability Patterns.
    Pelizzari M; McHale G; Armstrong S; Zhao H; Ledesma-Aguilar R; Wells GG; Kusumaatmaja H
    Langmuir; 2023 Nov; 39(44):15676-15689. PubMed ID: 37874819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements.
    Zhu L; Attard P; Neto C
    Langmuir; 2011 Jun; 27(11):6712-9. PubMed ID: 21542568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical Insights into Versatile Polydopamine Wet Adhesive Interacting with Liquid-Infused and Solid Slippery Surfaces.
    Xie L; Cui X; Liu J; Lu Q; Huang J; Mao X; Yang D; Tan J; Zhang H; Zeng H
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6941-6950. PubMed ID: 33523622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why Are Water Droplets Highly Mobile on Nanostructured Oil-Impregnated Surfaces?
    Zhang C; Adera S; Aizenberg J; Chen Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15901-15909. PubMed ID: 33754694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective.
    Pham QN; Zhang S; Montazeri K; Won Y
    Langmuir; 2018 Nov; 34(47):14439-14447. PubMed ID: 30372082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces.
    Ware CS; Smith-Palmer T; Peppou-Chapman S; Scarratt LRJ; Humphries EM; Balzer D; Neto C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4173-4182. PubMed ID: 29250952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting.
    Feng R; Xu C; Song F; Wang F; Wang XL; Wang YZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12373-12381. PubMed ID: 32048819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicone Oil-Infused Slippery Surfaces Based on Sol-Gel Process-Induced Nanocomposite Coatings: A Facile Approach to Highly Stable Bioinspired Surface for Biofouling Resistance.
    Wei C; Zhang G; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34810-34819. PubMed ID: 27998125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability.
    Coady MJ; Wood M; Wallace GQ; Nielsen KE; Kietzig AM; Lagugné-Labarthet F; Ragogna PJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2890-2896. PubMed ID: 29155549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.