BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 30720393)

  • 1. The Role of Glucagon-Like Peptide-1 in Energy Homeostasis.
    Salehi M; Purnell JQ
    Metab Syndr Relat Disord; 2019 May; 17(4):183-191. PubMed ID: 30720393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Neural Sites of GLP-1R Expression Mediate Physiological versus Pharmacological Control of Incretin Action.
    Varin EM; Mulvihill EE; Baggio LL; Koehler JA; Cao X; Seeley RJ; Drucker DJ
    Cell Rep; 2019 Jun; 27(11):3371-3384.e3. PubMed ID: 31189118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incretin system ABCs in obesity and diabetes - novel therapeutic strategies for weight loss and beyond.
    João AL; Reis F; Fernandes R
    Obes Rev; 2016 Jul; 17(7):553-72. PubMed ID: 27125902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucagon-like peptide-1 and energy homeostasis.
    Burcelin R; Cani PD; Knauf C
    J Nutr; 2007 Nov; 137(11 Suppl):2534S-2538S. PubMed ID: 17951498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats.
    Krieger JP; Santos da Conceição EP; Sanchez-Watts G; Arnold M; Pettersen KG; Mohammed M; Modica S; Lossel P; Morrison SF; Madden CJ; Watts AG; Langhans W; Lee SJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R708-R720. PubMed ID: 29847161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes and obesity treatment based on dual incretin receptor activation: 'twincretins'.
    Skow MA; Bergmann NC; Knop FK
    Diabetes Obes Metab; 2016 Sep; 18(9):847-54. PubMed ID: 27160961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of glucagon-like peptide 2 on energy homeostasis.
    Baldassano S; Amato A; Mulè F
    Peptides; 2016 Dec; 86():1-5. PubMed ID: 27664588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives in GLP-1 Research: New Targets, New Receptors.
    Cantini G; Mannucci E; Luconi M
    Trends Endocrinol Metab; 2016 Jun; 27(6):427-438. PubMed ID: 27091492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders.
    Richards P; Thornberry NA; Pinto S
    Mol Metab; 2021 Apr; 46():101175. PubMed ID: 33548501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications.
    Madsbad S
    Diabetes Obes Metab; 2014 Jan; 16(1):9-21. PubMed ID: 23617798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss.
    Buller S; Blouet C
    Am J Physiol Endocrinol Metab; 2024 Apr; 326(4):E472-E480. PubMed ID: 38381398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incretin hormones: Their role in health and disease.
    Nauck MA; Meier JJ
    Diabetes Obes Metab; 2018 Feb; 20 Suppl 1():5-21. PubMed ID: 29364588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of glucagon-like peptide-1 in reproduction: from physiology to therapeutic perspective.
    Jensterle M; Janez A; Fliers E; DeVries JH; Vrtacnik-Bokal E; Siegelaar SE
    Hum Reprod Update; 2019 Jul; 25(4):504-517. PubMed ID: 31260047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.
    Hansen MSS; Tencerova M; Frølich J; Kassem M; Frost M
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):25-37. PubMed ID: 28722834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors.
    Hansotia T; Baggio LL; Delmeire D; Hinke SA; Yamada Y; Tsukiyama K; Seino Y; Holst JJ; Schuit F; Drucker DJ
    Diabetes; 2004 May; 53(5):1326-35. PubMed ID: 15111503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New physiological effects of the incretin hormones GLP-1 and GIP.
    Asmar M
    Dan Med Bull; 2011 Feb; 58(2):B4248. PubMed ID: 21299928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lixisenatide requires a functional gut-vagus nerve-brain axis to trigger insulin secretion in controls and type 2 diabetic mice.
    Charpentier J; Waget A; Klopp P; Magnan C; Cruciani-Guglielmacci C; Lee SJ; Burcelin R; Grasset E
    Am J Physiol Gastrointest Liver Physiol; 2018 Nov; 315(5):G671-G684. PubMed ID: 30070580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms.
    Krieger JP
    Peptides; 2020 Sep; 131():170342. PubMed ID: 32522585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?
    Lean ME; Malkova D
    Int J Obes (Lond); 2016 Apr; 40(4):622-32. PubMed ID: 26499438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.
    Bauer PV; Hamr SC; Duca FA
    Cell Mol Life Sci; 2016 Feb; 73(4):737-55. PubMed ID: 26542800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.