These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30720729)
1. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Reynoso EC; Torres E; Bettazzi F; Palchetti I Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30720729 [TBL] [Abstract][Full Text] [Related]
2. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Montiel-León JM; Munoz G; Vo Duy S; Do DT; Vaudreuil MA; Goeury K; Guillemette F; Amyot M; Sauvé S Environ Pollut; 2019 Jul; 250():29-39. PubMed ID: 30981933 [TBL] [Abstract][Full Text] [Related]
3. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Pérez DJ; Okada E; De Gerónimo E; Menone ML; Aparicio VC; Costa JL Environ Toxicol Chem; 2017 Dec; 36(12):3206-3216. PubMed ID: 28631831 [TBL] [Abstract][Full Text] [Related]
4. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Pérez-Fernández B; Mercader JV; Abad-Fuentes A; Checa-Orrego BI; Costa-García A; Escosura-Muñiz A Talanta; 2020 Mar; 209():120465. PubMed ID: 31892037 [TBL] [Abstract][Full Text] [Related]
5. Risk assessment of pesticides used in the eastern Avocado Belt of Michoacan, Mexico: A survey and water monitoring approach. Merlo-Reyes A; Baduel C; Duwig C; Ramírez MI Sci Total Environ; 2024 Mar; 916():170288. PubMed ID: 38266736 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical immunosensors - A powerful tool for analytical applications. Felix FS; Angnes L Biosens Bioelectron; 2018 Apr; 102():470-478. PubMed ID: 29182930 [TBL] [Abstract][Full Text] [Related]
7. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors. Martini E; Merola G; Tomassetti M; Campanella L Food Chem; 2015 Feb; 169():358-65. PubMed ID: 25236238 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. Ashrafi Tafreshi F; Fatahi Z; Ghasemi SF; Taherian A; Esfandiari N PLoS One; 2020; 15(3):e0230646. PubMed ID: 32208468 [TBL] [Abstract][Full Text] [Related]
9. Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate. Majer-Baranyi K; Szendrei F; Adányi N; Székács A Biosensors (Basel); 2023 Jul; 13(8):. PubMed ID: 37622857 [TBL] [Abstract][Full Text] [Related]
10. Determination of carbamates and organophosphorus pesticides by SDME-GC in natural water. López-Blanco C; Gómez-Alvarez S; Rey-Garrote M; Cancho-Grande B; Simal-Gándara J Anal Bioanal Chem; 2005 Oct; 383(4):557-61. PubMed ID: 16132142 [TBL] [Abstract][Full Text] [Related]
11. ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. Bao J; Hou C; Dong Q; Ma X; Chen J; Huo D; Yang M; Galil KHAE; Chen W; Lei Y Biosens Bioelectron; 2016 Nov; 85():935-942. PubMed ID: 27315519 [TBL] [Abstract][Full Text] [Related]
12. Recent progress in immunosensors for pesticides. Fang L; Liao X; Jia B; Shi L; Kang L; Zhou L; Kong W Biosens Bioelectron; 2020 Sep; 164():112255. PubMed ID: 32479338 [TBL] [Abstract][Full Text] [Related]
13. Overview of Analytical Methods for the Determination of Neonicotinoid Pesticides in Honeybee Products and Honeybee. Tu X; Chen W Crit Rev Anal Chem; 2021; 51(4):329-338. PubMed ID: 32072823 [TBL] [Abstract][Full Text] [Related]
14. The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005-2006. Battaglin WA; Rice KC; Focazio MJ; Salmons S; Barry RX Environ Monit Assess; 2009 Aug; 155(1-4):281-307. PubMed ID: 18677547 [TBL] [Abstract][Full Text] [Related]
15. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Jain U; Saxena K; Hooda V; Balayan S; Singh AP; Tikadar M; Chauhan N Food Chem; 2022 Mar; 371():131126. PubMed ID: 34583176 [TBL] [Abstract][Full Text] [Related]
16. Preliminary study of pesticide drift into the Maya Mountain protected areas of Belize. Kaiser K Bull Environ Contam Toxicol; 2011 Jan; 86(1):56-9. PubMed ID: 21153805 [TBL] [Abstract][Full Text] [Related]
17. How to select relevant metabolites based on available data for parent molecules: Case of neonicotinoids, carbamates, phenylpyrazoles and organophosphorus compounds in French water resources. Melin J; Guillon A; Enault J; Esperanza M; Dauchy X; Bouchonnet S Environ Pollut; 2020 Oct; 265(Pt B):114992. PubMed ID: 32563121 [TBL] [Abstract][Full Text] [Related]
18. Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection - Mass spectrometry. Ciasca B; Pecorelli I; Lepore L; Paoloni A; Catucci L; Pascale M; Lattanzio VMT Food Chem; 2020 Apr; 310():125813. PubMed ID: 31757486 [TBL] [Abstract][Full Text] [Related]
19. Assessing the impact of imidacloprid, glyphosate, and their mixtures on multiple biomarkers in Corbicula largillierti. Lozano VL; Paolucci EM; Sabatini SE; Noya Abad T; Muñoz C; Liquin F; Hollert H; Sylvester F Sci Total Environ; 2024 Sep; 942():173685. PubMed ID: 38825192 [TBL] [Abstract][Full Text] [Related]
20. Assessing glyphosate and AMPA pesticides in the Ofanto River waters and sediments. Campanale C; Triozzi M; Losacco D; Ragonese A; Massarelli C Mar Pollut Bull; 2024 May; 202():116376. PubMed ID: 38636342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]