These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30720797)

  • 21. A nano-selenium reactive barrier approach for managing mercury over the life-cycle of compact fluorescent lamps.
    Lee B; Sarin L; Johnson NC; Hurt RH
    Environ Sci Technol; 2009 Aug; 43(15):5915-20. PubMed ID: 19731697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs).
    Salthammer T; Uhde E; Omelan A; Lüdecke A; Moriske HJ
    Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.
    Lecler MT; Zimmermann F; Silvente E; Masson A; Morèle Y; Remy A; Chollot A
    Waste Manag; 2018 Jun; 76():250-260. PubMed ID: 29496382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial assessment of net mercury emissions from the use of fluorescent bulbs.
    Eckelman MJ; Anastas PT; Zimmerman JB
    Environ Sci Technol; 2008 Nov; 42(22):8564-70. PubMed ID: 19068849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limiting the impact of light pollution on human health, environment and stellar visibility.
    Falchi F; Cinzano P; Elvidge CD; Keith DM; Haim A
    J Environ Manage; 2011 Oct; 92(10):2714-22. PubMed ID: 21745709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stocks and environmental release of mercury in backlight cold cathode fluorescence lamps.
    Zhuang X; Wang Y; Yuan W; Bai J; Wang J
    Waste Manag Res; 2018 Sep; 36(9):849-856. PubMed ID: 30014768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.
    Ozgur C; Coskun S; Akcil A; Beyhan M; Üncü IS; Civelekoglu G
    Waste Manag; 2016 Nov; 57():215-219. PubMed ID: 27040091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shedding some light on mercury lamps.
    Christen K
    Environ Sci Technol; 2006 Oct; 40(19):5829. PubMed ID: 17051763
    [No Abstract]   [Full Text] [Related]  

  • 29. Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study.
    Grigoropoulos CJ; Doulos LT; Zerefos SC; Tsangrassoulis A; Bhusal P
    Waste Manag; 2020 Jan; 101():188-199. PubMed ID: 31622864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.
    Al-Ghouti MA; Abuqaoud RH; Abu-Dieyeh MH
    Waste Manag; 2016 Mar; 49():238-244. PubMed ID: 26725036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photobiological safety of the recently introduced energy efficient household lamps.
    Necz PP; Bakos J
    Int J Occup Med Environ Health; 2014 Dec; 27(6):1036-42. PubMed ID: 25519943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.
    Arendt JD; Katers JF
    Waste Manag Res; 2013 Jul; 31(7):764-72. PubMed ID: 23635464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of mercury emission from linear type of spent fluorescent lamp.
    Rhee SW; Choi HH; Park HS
    Waste Manag; 2014 Jun; 34(6):1066-71. PubMed ID: 24053901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of mercury bonded in residual glass from spent fluorescent lamps.
    Rey-Raap N; Gallardo A
    J Environ Manage; 2013 Jan; 115():175-8. PubMed ID: 23262405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling pollution control and performance in China's provinces.
    Wei J; Jia R; Marinova D; Zhao D
    J Environ Manage; 2012 Dec; 113():263-70. PubMed ID: 23041518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual performance for trip hazard detection when using incandescent and led miner cap lamps.
    Sammarco JJ; Gallagher S; Reyes M
    J Safety Res; 2010 Apr; 41(2):85-91. PubMed ID: 20497793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents.
    Johnson NC; Manchester S; Sarin L; Gao Y; Kulaots I; Hurt RH
    Environ Sci Technol; 2008 Aug; 42(15):5772-8. PubMed ID: 18754507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.
    Lim SR; Kang D; Ogunseitan OA; Schoenung JM
    Environ Sci Technol; 2013 Jan; 47(2):1040-7. PubMed ID: 23237340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.