These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30720927)

  • 21. Neural stem cell isolation from the whole mouse brain using the novel FABP7-binding fluorescent dye, CDr3.
    Leong C; Zhai D; Kim B; Yun SW; Chang YT
    Stem Cell Res; 2013 Nov; 11(3):1314-22. PubMed ID: 24090932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A drop array culture for patterning adherent mouse embryonic stem cell-derived neurospheres.
    Dixon AR; Ramirez Y; Haengel K; Barald KF
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e379-e383. PubMed ID: 27943657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Isolation of neural stem cells from the spinal cords of human fetus.].
    Liu XC; Zhu Y
    Sheng Li Xue Bao; 2006 Aug; 58(4):384-90. PubMed ID: 16906341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of primary neurospheres generated from mouse ventral rostral hindbrain.
    Osterberg N; Roussa E
    Cell Tissue Res; 2009 Apr; 336(1):11-20. PubMed ID: 19224248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid and efficient generation of neural progenitors from adult bone marrow stromal cells by hypoxic preconditioning.
    Mung KL; Tsui YP; Tai EW; Chan YS; Shum DK; Shea GK
    Stem Cell Res Ther; 2016 Oct; 7(1):146. PubMed ID: 27717376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population.
    Torrado EF; Gomes C; Santos G; Fernandes A; Brites D; Falcão AS
    Int J Dev Neurosci; 2014 Oct; 37():94-9. PubMed ID: 25016067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and propagation of neural crest stem cells from mouse embryonic stem cells via cranial neurospheres.
    Minamino Y; Ohnishi Y; Kakudo K; Nozaki M
    Stem Cells Dev; 2015 Jan; 24(2):172-81. PubMed ID: 25141025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurosphere formation potential resides not in the caudal cell mass, but in the secondary neural tube.
    Lee JY; Lee ES; Kim SP; Lee MS; Phi JH; Kim SK; Hwang YI; Wang KC
    Int J Dev Biol; 2017; 61(8-9):545-550. PubMed ID: 29139540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and culture of adult neurons and neurospheres.
    Brewer GJ; Torricelli JR
    Nat Protoc; 2007; 2(6):1490-8. PubMed ID: 17545985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord.
    Mothe A; Tator CH
    J Vis Exp; 2015 May; (99):e52732. PubMed ID: 26067928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells.
    Chung DJ; Wong A; Hayashi K; Yellowley CE
    Vet J; 2014 Jan; 199(1):123-30. PubMed ID: 24252224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of neural progenitor cells from adult canine brains.
    Lim JH; Koh S; Olby NJ; Piedrahita J; Mariani CL
    Am J Vet Res; 2012 Dec; 73(12):1963-8. PubMed ID: 23176424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and Culture of Embryonic Mouse Neural Stem Cells.
    Homayouni Moghadam F; Sadeghi-Zadeh M; Alizadeh-Shoorjestan B; Dehghani-Varnamkhasti R; Narimani S; Darabi L; Kiani Esfahani A; Nasr Esfahani MH
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30474636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system.
    Louis SA; Mak CK; Reynolds BA
    Methods Mol Biol; 2013; 946():479-506. PubMed ID: 23179851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of proliferative capacity and passaging potential between neural stem and progenitor cells in adherent and neurosphere cultures.
    Sun T; Wang XJ; Xie SS; Zhang DL; Wang XP; Li BQ; Ma W; Xin H
    Int J Dev Neurosci; 2011 Nov; 29(7):723-31. PubMed ID: 21664447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal Changes in Transcription Factor Expression Associated with the Differentiation State of Cerebellar Neural Stem/Progenitor Cells During Development.
    Naruse M; Shibasaki K; Ishizaki Y
    Neurochem Res; 2018 Jan; 43(1):205-211. PubMed ID: 28988404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Efficient Method for Generating Murine Hypothalamic Neurospheres for the Study of Regional Neural Progenitor Biology.
    Nesan D; Thornton HF; Sewell LC; Kurrasch DM
    Endocrinology; 2020 Apr; 161(4):. PubMed ID: 32154873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis.
    Kim M; Morshead CM
    J Neurosci; 2003 Nov; 23(33):10703-9. PubMed ID: 14627655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell mRNA profiling identifies progenitor subclasses in neurospheres.
    Narayanan G; Poonepalli A; Chen J; Sankaran S; Hariharan S; Yu YH; Robson P; Yang H; Ahmed S
    Stem Cells Dev; 2012 Dec; 21(18):3351-62. PubMed ID: 22834539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro.
    Hofrichter M; Nimtz L; Tigges J; Kabiri Y; Schröter F; Royer-Pokora B; Hildebrandt B; Schmuck M; Epanchintsev A; Theiss S; Adjaye J; Egly JM; Krutmann J; Fritsche E
    Stem Cell Res; 2017 Dec; 25():72-82. PubMed ID: 29112887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.