These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3072098)

  • 1. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae.
    Crouzet M; Izgu F; Grant CM; Tuite MF
    Curr Genet; 1988 Dec; 14(6):537-43. PubMed ID: 3072098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes.
    Stansfield I; Akhmaloka ; Tuite MF
    Curr Genet; 1995 Apr; 27(5):417-26. PubMed ID: 7586027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3.
    Crouzet M; Tuite MF
    Mol Gen Genet; 1987 Dec; 210(3):581-3. PubMed ID: 3323850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast.
    Stansfield I; Eurwilaichitr L; Akhmaloka ; Tuite MF
    Mol Microbiol; 1996 Jun; 20(6):1135-43. PubMed ID: 8809766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product.
    Himmelfarb HJ; Maicas E; Friesen JD
    Mol Cell Biol; 1985 Apr; 5(4):816-22. PubMed ID: 3887137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of allosuppressor alleles of the SAL4 gene in the study of translational fidelity in Saccharomyces cerevisiae.
    Akhmaloka ; Grant CM; Stansfield I; Tuite MF
    Biochem Soc Trans; 1991 Aug; 19(3):281S. PubMed ID: 1783125
    [No Abstract]   [Full Text] [Related]  

  • 7. In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity.
    Tassan JP; Le Guellec K; Kress M; Faure M; Camonis J; Jacquet M; Philippe M
    Mol Cell Biol; 1993 May; 13(5):2815-21. PubMed ID: 8474443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two new loci that give rise to dominant omnipotent suppressors in Saccharomyces cerevisiae.
    Ono B; Tanaka M; Awano I; Okamoto F; Satoh R; Yamagishi N; Ishino-Arao Y
    Curr Genet; 1989 Dec; 16(5-6):323-30. PubMed ID: 2692850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae.
    Song JM; Liebman SW
    Genetics; 1987 Mar; 115(3):451-60. PubMed ID: 3552876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hygromycin- and paromomycin-resistant mutants of Aspergillus nidulans alter translational fidelity.
    Martinelli SD; Sheikh A
    Curr Genet; 1991 Aug; 20(3):211-8. PubMed ID: 1934127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2.
    Song JM; Liebman SW
    Curr Genet; 1989 Dec; 16(5-6):315-21. PubMed ID: 2692849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants.
    McCusker JH; Haber JE
    Genetics; 1988 Jun; 119(2):317-27. PubMed ID: 3294104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inheritance of suppressors of the drug sensitivity of a NSR1 deleted yeast strain.
    Zabetakis D
    Yeast; 2000 Sep; 16(12):1147-59. PubMed ID: 10953086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae.
    Chernoff YO; Inge-Vechtomov SG; Derkach IL; Ptyushkina MV; Tarunina OV; Dagkesamanskaya AR; Ter-Avanesyan MD
    Yeast; 1992 Jul; 8(7):489-99. PubMed ID: 1523883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae.
    Mendenhall MD; Leeds P; Fen H; Mathison L; Zwick M; Sleiziz C; Culbertson MR
    J Mol Biol; 1987 Mar; 194(1):41-58. PubMed ID: 3039147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The omnipotent suppressor SUP45 affects nucleic acid metabolism and mitochondrial structure.
    Pocklington MJ; Johnston L; Jenkins JR; Orr E
    Yeast; 1990; 6(5):441-50. PubMed ID: 2220077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127.
    Haffter P; Fox TD
    Mol Gen Genet; 1992 Oct; 235(1):64-73. PubMed ID: 1279374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast translational allosuppressor, SAL6: a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension.
    Vincent A; Newnam G; Liebman SW
    Genetics; 1994 Nov; 138(3):597-608. PubMed ID: 7851758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA.
    Amberg DC; Goldstein AL; Cole CN
    Genes Dev; 1992 Jul; 6(7):1173-89. PubMed ID: 1628825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P40SDB25, a putative CDK inhibitor, has a role in the M/G1 transition in Saccharomyces cerevisiae.
    Donovan JD; Toyn JH; Johnson AL; Johnston LH
    Genes Dev; 1994 Jul; 8(14):1640-53. PubMed ID: 7958845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.