These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30721034)

  • 1. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure.
    Kesy J; Patil KM; Kumar SR; Shu Z; Yong HY; Zimmermann L; Ong AAL; Toh DK; Krishna MS; Yang L; Decout JL; Luo D; Prabakaran M; Chen G; Kierzek E
    Bioconjug Chem; 2019 Mar; 30(3):931-943. PubMed ID: 30721034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog.
    Krishna MS; Toh DK; Meng Z; Ong AAL; Wang Z; Lu Y; Xia K; Prabakaran M; Chen G
    Anal Chem; 2019 Apr; 91(8):5331-5338. PubMed ID: 30873827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs.
    Patil KM; Toh DK; Yuan Z; Meng Z; Shu Z; Zhang H; Ong AAL; Krishna MS; Lu L; Lu Y; Chen G
    Nucleic Acids Res; 2018 Sep; 46(15):7506-7521. PubMed ID: 30011039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting.
    Puah RY; Jia H; Maraswami M; Toh DK; Ero R; Yang L; Patil KM; Ong AAL; Krishna MS; Sun R; Tong C; Huang M; Chen X; Loh TP; Gao YG; Liu DX; Chen G
    Biochemistry; 2018 Jan; 57(1):149-159. PubMed ID: 29116759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating G-C Pair-Recognizing Guanidinium into PNAs for Sequence and Structure Specific Recognition of dsRNAs over dsDNAs and ssRNAs.
    Krishna MS; Wang Z; Zheng L; Bowry J; Ong AAL; Mu Y; Prabakaran M; Chen G
    Biochemistry; 2019 Sep; 58(36):3777-3788. PubMed ID: 31424191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
    Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G
    Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.
    Gupta P; Muse O; Rozners E
    Biochemistry; 2012 Jan; 51(1):63-73. PubMed ID: 22146072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor.
    Ong AAL; Toh DK; Krishna MS; Patil KM; Okamura K; Chen G
    Biochemistry; 2019 Aug; 58(32):3444-3453. PubMed ID: 31318532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids.
    Toh DK; Patil KM; Chen G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
    Chien CY; Xu Y; Xiao R; Aramini JM; Sahasrabudhe PV; Krug RM; Montelione GT
    Biochemistry; 2004 Feb; 43(7):1950-62. PubMed ID: 14967035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A peptide nucleic acid-neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication.
    Riguet E; Tripathi S; Chaubey B; Désiré J; Pandey VN; Décout JL
    J Med Chem; 2004 Sep; 47(20):4806-9. PubMed ID: 15369382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA.
    Zhan X; Deng L; Chen G
    Biopolymers; 2022 Feb; 113(2):e23476. PubMed ID: 34581432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart.
    Sato T; Sato Y; Nishizawa S
    Biopolymers; 2022 Jan; 113(1):e23474. PubMed ID: 34478151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction.
    Liu G; Park HS; Pyo HM; Liu Q; Zhou Y
    J Virol; 2015 Jun; 89(11):6067-79. PubMed ID: 25810557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA.
    Yoo JS; Kim CM; Kim JH; Kim JY; Oh JW
    Antiviral Res; 2009 Jun; 82(3):122-33. PubMed ID: 19428603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
    Hnedzko D; Cheruiyot SK; Rozners E
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():4.60.1-23. PubMed ID: 25199637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication.
    Lenartowicz E; Nogales A; Kierzek E; Kierzek R; Martínez-Sobrido L; Turner DH
    Nucleic Acid Ther; 2016 Oct; 26(5):277-285. PubMed ID: 27463680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex.
    Toh DK; Devi G; Patil KM; Qu Q; Maraswami M; Xiao Y; Loh TP; Zhao Y; Chen G
    Nucleic Acids Res; 2016 Nov; 44(19):9071-9082. PubMed ID: 27596599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
    Hnedzko D; Rozners E
    Methods Enzymol; 2019; 623():401-416. PubMed ID: 31239055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.