BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30721043)

  • 1. Formation of Protein Corona on Nanoparticles with Digestive Enzymes in Simulated Gastrointestinal Fluids.
    Wang Y; Li M; Xu X; Tang W; Xiong L; Sun Q
    J Agric Food Chem; 2019 Feb; 67(8):2296-2306. PubMed ID: 30721043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of Surface-Functionalized Starch Nanoparticles with Pepsin and Trypsin in Simulated Gastrointestinal Fluids.
    Wang Y; Sun Y; Yang J; Dai L; Ji N; Xiong L; Sun Q
    J Agric Food Chem; 2020 Sep; 68(37):10174-10183. PubMed ID: 32816465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digestive Enzyme Corona Formed in the Gastrointestinal Tract and Its Impact on Epithelial Cell Uptake of Nanoparticles.
    Peng Q; Liu J; Zhang T; Zhang TX; Zhang CL; Mu H
    Biomacromolecules; 2019 Apr; 20(4):1789-1797. PubMed ID: 30893550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of protein corona on interaction of pepsin with chitin nanowhiskers in simulated gastric fluid.
    Wang Y; Zhou L; Sun Y; Mu H; Li X; Wang Y; Sun Q
    Food Chem; 2022 Jul; 383():132393. PubMed ID: 35182870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the toxicity of 5-fluorouracil on three digestive enzymes from the view of side effects.
    Wang Y; Han Q; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117105. PubMed ID: 31141767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking.
    Ma X; He J; Huang Y; Xiao Y; Wang Q; Li H
    J Mol Recognit; 2017 May; 30(5):. PubMed ID: 27943449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing deep into the binding mechanisms of folic acid with α-amylase, pepsin and trypsin: An experimental and computational study.
    Shi W; Wang Y; Zhang H; Liu Z; Fei Z
    Food Chem; 2017 Jul; 226():128-134. PubMed ID: 28254002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake.
    Di Silvio D; Rigby N; Bajka B; Mackie A; Baldelli Bombelli F
    Int J Biochem Cell Biol; 2016 Jun; 75():212-22. PubMed ID: 26520468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model.
    Walczak AP; Kramer E; Hendriksen PJ; Helsdingen R; van der Zande M; Rietjens IM; Bouwmeester H
    Nanotoxicology; 2015; 9(7):886-94. PubMed ID: 25672814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on the interaction mechanism of exemestane to three digestive enzymes by multi-spectroscopy and molecular docking.
    Huang Y; Zhao G; Jin Z; Gao Y; Wang H
    Int J Biol Macromol; 2021 Sep; 187():54-65. PubMed ID: 34274402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques.
    Fang Y; Xu H; Shen L; Huang F; Yibulayin S; Huang S; Tian S; Hu Z; He Z; Li F; Li Y; Zhou K
    Luminescence; 2015 Sep; 30(6):859-66. PubMed ID: 25630561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles without and with protein corona: van der Waals and hydration interaction.
    Zhdanov VP
    J Biol Phys; 2019 Sep; 45(3):307-316. PubMed ID: 31432351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin.
    Li X; Guo W; Xu R; Song Z; Ni T
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120983. PubMed ID: 35149482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the interaction of graphene oxide‑silver nanocomposites with bovine serum albumin and the formation of nanoparticle-protein corona.
    Xu X; Mao X; Wang Y; Li D; Du Z; Wu W; Jiang L; Yang J; Li J
    Int J Biol Macromol; 2018 Sep; 116():492-501. PubMed ID: 29753014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach.
    Li X; Geng M
    Int J Biol Macromol; 2016 Apr; 85():168-78. PubMed ID: 26740464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona.
    Martinez-Moro M; Di Silvio D; Moya SE
    Biophys Chem; 2019 Oct; 253():106218. PubMed ID: 31325709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the interaction of β-carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques.
    Li X; Li P
    Luminescence; 2016 May; 31(3):782-92. PubMed ID: 26358735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System.
    Barbero F; Russo L; Vitali M; Piella J; Salvo I; Borrajo ML; Busquets-Fité M; Grandori R; Bastús NG; Casals E; Puntes V
    Semin Immunol; 2017 Dec; 34():52-60. PubMed ID: 29066063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration.
    Wang H; Ma R; Nienhaus K; Nienhaus GU
    Small; 2019 May; 15(22):e1900974. PubMed ID: 31021510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles.
    García Vence M; Chantada-Vázquez MDP; Vázquez-Estévez S; Manuel Cameselle-Teijeiro J; Bravo SB; Núñez C
    Clin Chim Acta; 2020 Feb; 501():102-111. PubMed ID: 31678275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.