These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30721055)
21. Transmission of Grapevine Red Blotch Virus by Hoyle V; Flasco MT; Choi J; Cieniewicz EJ; McLane H; Perry K; Dangl G; Rwahnih MA; Heck M; Loeb G; Fuchs MF Viruses; 2022 May; 14(6):. PubMed ID: 35746628 [TBL] [Abstract][Full Text] [Related]
22. Berry composition and climate: responses and empirical models. Barnuud NN; Zerihun A; Gibberd M; Bates B Int J Biometeorol; 2014 Aug; 58(6):1207-23. PubMed ID: 23958789 [TBL] [Abstract][Full Text] [Related]
23. Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping. Brillante L; Martínez-Luscher J; Yu R; Plank CM; Sanchez L; Bates TL; Brenneman C; Oberholster A; Kurtural SK J Agric Food Chem; 2017 Jul; 65(26):5255-5265. PubMed ID: 28602091 [TBL] [Abstract][Full Text] [Related]
24. Water Deficits Do Not Improve Fruit Quality in Levin AD; Kc AN Front Plant Sci; 2020; 11():1292. PubMed ID: 32973850 [TBL] [Abstract][Full Text] [Related]
25. [Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei Province, China]. Li MM; Yuan JW; Liu CJ; Han B; Huang JZ; Guo ZJ; Zhao SI Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):59-63. PubMed ID: 27228593 [TBL] [Abstract][Full Text] [Related]
26. Association of a DNA virus with grapevines affected by red blotch disease in California. Al Rwahnih M; Dave A; Anderson MM; Rowhani A; Uyemoto JK; Sudarshana MR Phytopathology; 2013 Oct; 103(10):1069-76. PubMed ID: 23656312 [TBL] [Abstract][Full Text] [Related]
27. Spatial Associations of Vines Infected With Grapevine Red Blotch Virus in Oregon Vineyards. Dalton DT; Hilton RJ; Kaiser C; Daane KM; Sudarshana MR; Vo J; Zalom FG; Buser JZ; Walton VM Plant Dis; 2019 Jul; 103(7):1507-1514. PubMed ID: 31025904 [TBL] [Abstract][Full Text] [Related]
28. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Soubeyrand E; Basteau C; Hilbert G; van Leeuwen C; Delrot S; Gomès E Phytochemistry; 2014 Jul; 103():38-49. PubMed ID: 24735825 [TBL] [Abstract][Full Text] [Related]
29. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Carbonell-Bejerano P; Santa María E; Torres-Pérez R; Royo C; Lijavetzky D; Bravo G; Aguirreolea J; Sánchez-Díaz M; Antolín MC; Martínez-Zapater JM Plant Cell Physiol; 2013 Jul; 54(7):1200-16. PubMed ID: 23659918 [TBL] [Abstract][Full Text] [Related]
30. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
31. Rootstock-Mediated Effects on Cabernet Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic Profiles. Wang Y; Chen WK; Gao XT; He L; Yang XH; He F; Duan CQ; Wang J Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669297 [TBL] [Abstract][Full Text] [Related]
32. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
33. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. Cáceres-Mella A; Talaverano MI; Villalobos-González L; Ribalta-Pizarro C; Pastenes C Plant Physiol Biochem; 2017 Aug; 117():34-41. PubMed ID: 28587991 [TBL] [Abstract][Full Text] [Related]
34. Grapevine Red Blotch-Associated Virus, an Emerging Threat to the Grapevine Industry. Sudarshana MR; Perry KL; Fuchs MF Phytopathology; 2015 Jul; 105(7):1026-32. PubMed ID: 25738551 [TBL] [Abstract][Full Text] [Related]
35. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Castellarin SD; Matthews MA; Di Gaspero G; Gambetta GA Planta; 2007 Dec; 227(1):101-12. PubMed ID: 17694320 [TBL] [Abstract][Full Text] [Related]
36. Grape berry transpiration influences ripening and must composition in cv. Tempranillo (Vitis vinifera L.). Pascual I; Antolín MC; Goicoechea N; Irigoyen JJ; Morales F Physiol Plant; 2022 Jul; 174(4):e13741. PubMed ID: 35765704 [TBL] [Abstract][Full Text] [Related]
38. Prevalence and Genetic Diversity of Grabloviruses in Free-Living Vitis spp. Cieniewicz E; Thompson JR; McLane H; Perry KL; Dangl GS; Corbett Q; Martinson T; Wise A; Wallis A; O'Connell J; Dunst R; Cox K; Fuchs M Plant Dis; 2018 Nov; 102(11):2308-2316. PubMed ID: 30207510 [TBL] [Abstract][Full Text] [Related]
39. Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. Halldorson MM; Keller M Planta; 2018 Nov; 248(5):1201-1211. PubMed ID: 30094489 [TBL] [Abstract][Full Text] [Related]
40. Insights Into the Ecology of Grapevine red blotch virus in a Diseased Vineyard. Cieniewicz EJ; Pethybridge SJ; Loeb G; Perry K; Fuchs M Phytopathology; 2018 Jan; 108(1):94-102. PubMed ID: 28945519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]