These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30721079)

  • 1. Light-Induced Thermal Gradients in Ruthenium Catalysts Significantly Enhance Ammonia Production.
    Li X; Zhang X; Everitt HO; Liu J
    Nano Lett; 2019 Mar; 19(3):1706-1711. PubMed ID: 30721079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects.
    Zhang X; Li X; Reish ME; Zhang D; Su NQ; Gutiérrez Y; Moreno F; Yang W; Everitt HO; Liu J
    Nano Lett; 2018 Mar; 18(3):1714-1723. PubMed ID: 29438619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on sensing and catalytic activity of nano-catalyst for synthesis of one-step ammonia and urea: Challenges and perspectives.
    Qureshi S; Mumtaz M; Chong FK; Mukhtar A; Saqib S; Ullah S; Mubashir M; Khoo KS; Show PL
    Chemosphere; 2022 Mar; 291(Pt 3):132806. PubMed ID: 34780730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts.
    Ng PF; Li L; Wang S; Zhu Z; Lu G; Yan Z
    Environ Sci Technol; 2007 May; 41(10):3758-62. PubMed ID: 17547209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store.
    Kitano M; Inoue Y; Yamazaki Y; Hayashi F; Kanbara S; Matsuishi S; Yokoyama T; Kim SW; Hara M; Hosono H
    Nat Chem; 2012 Nov; 4(11):934-40. PubMed ID: 23089869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2.
    Wang C; Ranasingha O; Natesakhawat S; Ohodnicki PR; Andio M; Lewis JP; Matranga C
    Nanoscale; 2013 Aug; 5(15):6968-74. PubMed ID: 23794025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minireview on catalysts for photocatalytic N
    Qi P; Gao X; Wang J; Liu H; He D; Zhang Q
    RSC Adv; 2022 Jan; 12(3):1244-1257. PubMed ID: 35425192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site.
    Wang T; Abild-Pedersen F
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34282023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shielding Protection by Mesoporous Catalysts for Improving Plasma-Catalytic Ambient Ammonia Synthesis.
    Wang Y; Yang W; Xu S; Zhao S; Chen G; Weidenkaff A; Hardacre C; Fan X; Huang J; Tu X
    J Am Chem Soc; 2022 Jul; 144(27):12020-12031. PubMed ID: 35731953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis.
    Lu Y; Yang Y; Zhang T; Ge Z; Chang H; Xiao P; Xie Y; Hua L; Li Q; Li H; Ma B; Guan N; Ma Y; Chen Y
    ACS Nano; 2016 Nov; 10(11):10507-10515. PubMed ID: 27934092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer?
    Ravi M; Makepeace JW
    Chem Sci; 2022 Jan; 13(4):890-908. PubMed ID: 35211256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonia Synthesis at Low Pressure.
    Cussler E; McCormick A; Reese M; Malmali M
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous Catalytic Oxidation of Ammonia by Various Transition Metals.
    Laan PCM; Franke MC; van Lent R; Juurlink LBF
    J Chem Educ; 2019 Oct; 96(10):2266-2270. PubMed ID: 31624412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.
    Sato K; Imamura K; Kawano Y; Miyahara SI; Yamamoto T; Matsumura S; Nagaoka K
    Chem Sci; 2017 Jan; 8(1):674-679. PubMed ID: 28451216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-assisted catalytic formation of ammonia in N
    Ben Yaala M; Saeedi A; Scherrer DF; Moser L; Steiner R; Zutter M; Oberkofler M; De Temmerman G; Marot L; Meyer E
    Phys Chem Chem Phys; 2019 Jul; 21(30):16623-16633. PubMed ID: 31317167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of metal loading on the performance of Co catalysts supported on mixed MgO-La
    Ronduda H; Zybert M; Patkowski W; Sobczak K; Moszyński D; Albrecht A; Sarnecki A; Raróg-Pilecka W
    RSC Adv; 2022 Nov; 12(52):33876-33888. PubMed ID: 36505722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.
    Kitano M; Inoue Y; Sasase M; Kishida K; Kobayashi Y; Nishiyama K; Tada T; Kawamura S; Yokoyama T; Hara M; Hosono H
    Angew Chem Int Ed Engl; 2018 Mar; 57(10):2648-2652. PubMed ID: 29356337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of ammonia using sodium melt.
    Kawamura F; Taniguchi T
    Sci Rep; 2017 Sep; 7(1):11578. PubMed ID: 28912549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.