These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30721303)
21. Parasympathetic influences on emmetropization in chicks: evidence for different mechanisms in form deprivation vs negative lens-induced myopia. Nickla DL; Schroedl F Exp Eye Res; 2012 Sep; 102():93-103. PubMed ID: 22828050 [TBL] [Abstract][Full Text] [Related]
22. Association of PIK3CG gene polymorphisms with attention-deficit/hyperactivity disorder: A case-control study. Gu X; Yuan FF; Huang X; Hou Y; Wang M; Lin J; Wu J Prog Neuropsychopharmacol Biol Psychiatry; 2018 Feb; 81():169-177. PubMed ID: 29097255 [TBL] [Abstract][Full Text] [Related]
23. Synchronous myopia development induced by bilateral form deprivation in chicks. Kang BS; Leung TW; Vyas SA; Ayerakwah PA; Lin J; Liang Y; Stell WK; Kee CS Exp Eye Res; 2024 Feb; 239():109783. PubMed ID: 38199262 [TBL] [Abstract][Full Text] [Related]
25. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization. Collery RF; Veth KN; Dubis AM; Carroll J; Link BA PLoS One; 2014; 9(10):e110699. PubMed ID: 25334040 [TBL] [Abstract][Full Text] [Related]
26. Eyes of a lower vertebrate are susceptible to the visual environment. Shen W; Sivak JG Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4829-37. PubMed ID: 17898310 [TBL] [Abstract][Full Text] [Related]
27. Nature versus nurture: A systematic approach to elucidate gene-environment interactions in the development of myopic refractive errors. Miraldi Utz V Ophthalmic Genet; 2017; 38(2):117-121. PubMed ID: 27232389 [TBL] [Abstract][Full Text] [Related]
28. The FGF2 gene in a myopia animal model and human subjects. An J; Hsi E; Zhou X; Tao Y; Juo SH; Liang CL Mol Vis; 2012; 18():471-8. PubMed ID: 22393273 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. Tideman JWL; Pärssinen O; Haarman AEG; Khawaja AP; Wedenoja J; Williams KM; Biino G; Ding X; Kähönen M; Lehtimäki T; Raitakari OT; Cheng CY; Jonas JB; Young TL; Bailey-Wilson JE; Rahi J; Williams C; He M; Mackey DA; Guggenheim JA; JAMA Ophthalmol; 2021 Jun; 139(6):601-609. PubMed ID: 33830181 [TBL] [Abstract][Full Text] [Related]
30. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. Flitcroft DI; Loughman J; Wildsoet CF; Williams C; Guggenheim JA; Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):338-348. PubMed ID: 29346494 [TBL] [Abstract][Full Text] [Related]
31. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. He L; Frost MR; Siegwart JT; Norton TT Exp Eye Res; 2014 Jun; 123():56-71. PubMed ID: 24742494 [TBL] [Abstract][Full Text] [Related]
32. Similar genetic susceptibility to form-deprivation myopia in three strains of chicken. Guggenheim JA; Erichsen JT; Hocking PM; Wright NF; Black R Vision Res; 2002 Nov; 42(25):2747-56. PubMed ID: 12450494 [TBL] [Abstract][Full Text] [Related]
33. Visual deprivation myopia with translucent and black goggles. Yoshino Y; Funata M; Akazawa Y; Tokoro T Ophthalmologica; 1997; 211(1):4-7. PubMed ID: 8958524 [TBL] [Abstract][Full Text] [Related]
34. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Tideman JW; Fan Q; Polling JR; Guo X; Yazar S; Khawaja A; Höhn R; Lu Y; Jaddoe VW; Yamashiro K; Yoshikawa M; Gerhold-Ay A; Nickels S; Zeller T; He M; Boutin T; Bencic G; Vitart V; Mackey DA; Foster PJ; MacGregor S; Williams C; Saw SM; Guggenheim JA; Klaver CC; Genet Epidemiol; 2016 Dec; 40(8):756-766. PubMed ID: 27611182 [TBL] [Abstract][Full Text] [Related]
35. A genetic risk score and number of myopic parents independently predict myopia. Ghorbani Mojarrad N; Williams C; Guggenheim JA Ophthalmic Physiol Opt; 2018 Sep; 38(5):492-502. PubMed ID: 30182516 [TBL] [Abstract][Full Text] [Related]
36. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. Zhao F; Zhang D; Zhou Q; Zhao F; He M; Yang Z; Su Y; Zhai Y; Yan J; Zhang G; Xue A; Tang J; Han X; Shi Y; Zhu Y; Liu T; Zhuang W; Huang L; Hong Y; Wu D; Li Y; Lu Q; Chen W; Jiao S; Wang Q; Srinivasalu N; Wen Y; Zeng C; Qu J; Zhou X EBioMedicine; 2020 Jul; 57():102878. PubMed ID: 32652319 [TBL] [Abstract][Full Text] [Related]
37. Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis. Meguro A; Yamane T; Takeuchi M; Miyake M; Fan Q; Zhao W; Wang IJ; Mizuki Y; Yamada N; Nomura N; Tsujikawa A; Matsuda F; Hosoda Y; Saw SM; Cheng CY; Tsai TH; Yoshida M; Iijima Y; Teshigawara T; Okada E; Ota M; Inoko H; Mizuki N Ophthalmology; 2020 Dec; 127(12):1612-1624. PubMed ID: 32428537 [TBL] [Abstract][Full Text] [Related]
38. Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Schaeffel F; Bartmann M; Hagel G; Zrenner E Vision Res; 1995 May; 35(9):1247-64. PubMed ID: 7610585 [TBL] [Abstract][Full Text] [Related]
39. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens. Nickla DL; Sharda V; Troilo D Optom Vis Sci; 2005 Apr; 82(4):318-27. PubMed ID: 15829859 [TBL] [Abstract][Full Text] [Related]
40. Recovery from axial myopia induced by a monocularly deprived facemask in adolescent (7-week-old) guinea pigs. Zhou X; Lu F; Xie R; Jiang L; Wen J; Li Y; Shi J; He T; Qu J Vision Res; 2007 Apr; 47(8):1103-11. PubMed ID: 17350070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]