These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30721319)

  • 61. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration.
    Carresi C; Scicchitano M; Scarano F; Macrì R; Bosco F; Nucera S; Ruga S; Zito MC; Mollace R; Guarnieri L; Coppoletta AR; Gliozzi M; Musolino V; Maiuolo J; Palma E; Mollace V
    Nutrients; 2021 Jan; 13(1):. PubMed ID: 33477916
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heartbreak hotel: a convergence in cardiac regeneration.
    Schneider MD
    Development; 2016 May; 143(9):1435-41. PubMed ID: 27143752
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application.
    Bozorgmehr M; Gurung S; Darzi S; Nikoo S; Kazemnejad S; Zarnani AH; Gargett CE
    Front Cell Dev Biol; 2020; 8():497. PubMed ID: 32742977
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intracoronary delivery of bone-marrow-derived stem cells.
    Bui QT; Gertz ZM; Wilensky RL
    Stem Cell Res Ther; 2010 Sep; 1(4):29. PubMed ID: 20863415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cardiac cell-based therapy: cell types and mechanisms of actions.
    Ramos GA; Hare JM
    Cell Transplant; 2007; 16(9):951-61. PubMed ID: 18293894
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.
    Nagata H; Ii M; Kohbayashi E; Hoshiga M; Hanafusa T; Asahi M
    Stem Cells Transl Med; 2016 Feb; 5(2):141-51. PubMed ID: 26683873
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Myocardial regeneration potential of adipose tissue-derived stem cells.
    Bai X; Alt E
    Biochem Biophys Res Commun; 2010 Oct; 401(3):321-6. PubMed ID: 20833143
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy.
    Bianconi V; Sahebkar A; Kovanen P; Bagaglia F; Ricciuti B; Calabrò P; Patti G; Pirro M
    Pharmacol Ther; 2018 Jan; 181():156-168. PubMed ID: 28827151
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nonfreezing Low Temperature Maintains the Viability of Menstrual Blood-Derived Endometrial Stem Cells Under Oxygen-Glucose Deprivation Through the Sustained Release of Autophagy-Produced Energy.
    Chen T; Zhang S; Jin H; Fu X; Shang L; Lu Y; Sun Y; Hisham Yahaya B; Liu Y; Lin J
    Cell Transplant; 2022; 31():9636897221086971. PubMed ID: 35416078
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of platelet-rich plasma on the activity of human menstrual blood-derived stromal cells in vitro.
    Zhang S; Li P; Yuan Z; Tan J
    Stem Cell Res Ther; 2018 Feb; 9(1):48. PubMed ID: 29482651
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative effect of human platelet derivatives on proliferation and osteogenic differentiation of menstrual blood-derived stem cells.
    Kazemnejad S; Najafi R; Zarnani AH; Eghtesad S
    Mol Biotechnol; 2014 Mar; 56(3):223-31. PubMed ID: 24037410
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation.
    Azedi F; Kazemnejad S; Zarnani AH; Soleimani M; Shojaei A; Arasteh S
    Mol Biol Rep; 2017 Feb; 44(1):169-182. PubMed ID: 27981446
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adult stem cells in the endometrium.
    Gargett CE; Masuda H
    Mol Hum Reprod; 2010 Nov; 16(11):818-34. PubMed ID: 20627991
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects.
    Chen X; Wu Y; Wang Y; Chen L; Zheng W; Zhou S; Xu H; Li Y; Yuan L; Xiang C
    Stem Cell Res Ther; 2020 Nov; 11(1):477. PubMed ID: 33176882
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PDGFBB improved the biological function of menstrual blood-derived stromal cells and the anti-fibrotic properties of exosomes.
    Zhang X; Zhang S; Qi J; Zhao F; Lu Y; Li S; Wu S; Li P; Tan J
    Stem Cell Res Ther; 2023 Apr; 14(1):113. PubMed ID: 37118830
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Application of Stem Cell Technologies to Regenerate Injured Myocardium and Improve Cardiac Function.
    Mardanpour P; Nayernia K; Khodayari S; Khodayari H; Molcanyi M; Hescheler J
    Cell Physiol Biochem; 2019; 53(1):101-120. PubMed ID: 31215778
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MenSCs exert a supportive role in establishing a pregnancy-friendly microenvironment by inhibiting TH17 polarization.
    Ghanavatinejad A; Bozorgmehr M; Shokri MR; Aleahmad M; Tavakoli M; Shokri F; Zarnani AH
    J Reprod Immunol; 2021 Apr; 144():103252. PubMed ID: 33549903
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regenerative capacity of autologous stem cell transplantation in elderly: a report of biomedical outcomes.
    Gonzalez-Garza MT; Cruz-Vega DE
    Regen Med; 2017 Mar; 12(2):169-178. PubMed ID: 28244829
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-gynaecological Applications of Menstrual-derived Stem Cells: A Systematic Review.
    Galea C; Riva N; Calleja-Agius J
    Avicenna J Med Biotechnol; 2022; 14(1):10-29. PubMed ID: 35509365
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differentiation of Menstrual Blood Stem Cells into Keratinocyte-Like Cells on Bilayer Nanofibrous Scaffold.
    Arasteh S; Katebifar S; Shirazi R; Kazemnejad S
    Methods Mol Biol; 2020; 2125():129-156. PubMed ID: 30187401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.