These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30721358)

  • 1. Properties of the Geometric Phase in Electromechanical Oscillations of Carbon-Nanotube-Based Nanowire Resonators.
    Choi JR; Ju S
    Nanoscale Res Lett; 2019 Feb; 14(1):44. PubMed ID: 30721358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the geometric phase for a nanowire-bridged superconducting Fabry-Perot resonator.
    Choi JR; Ju S
    Sci Rep; 2019 Jun; 9(1):8428. PubMed ID: 31182767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics.
    Choi JR
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh frequency nanotube resonators.
    Peng HB; Chang CW; Aloni S; Yuzvinsky TD; Zettl A
    Phys Rev Lett; 2006 Aug; 97(8):087203. PubMed ID: 17026328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric amplification and self-oscillation in a nanotube mechanical resonator.
    Eichler A; Chaste J; Moser J; Bachtold A
    Nano Lett; 2011 Jul; 11(7):2699-703. PubMed ID: 21615135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits.
    Choi JR; Choi BJ; Kim HD
    Nanoscale Res Lett; 2013 Jan; 8(1):30. PubMed ID: 23320631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezing effects applied in nonclassical superposition states for quantum nanoelectronic circuits.
    Choi JR
    Nano Converg; 2017; 4(1):17. PubMed ID: 28736693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of mode formation in an open resonator.
    Niziev VG; Grishaev RV
    Appl Opt; 2010 Dec; 49(34):6582-90. PubMed ID: 21124534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel quantum description for nonadiabatic evolution of light wave propagation in time-dependent linear media.
    Lakehal H; Maamache M; Choi JR
    Sci Rep; 2016 Feb; 6():19860. PubMed ID: 26847267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical characterization of quantum interference in a topological insulator nanowire.
    Kim M; Kim J; Hou Y; Yu D; Doh YJ; Kim B; Kim KW; Suh J
    Nat Commun; 2019 Oct; 10(1):4522. PubMed ID: 31586072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric Phase in Twisted Topological Complementary Pair.
    Zhang K; Li X; Dong D; Xue M; You WL; Liu Y; Gao L; Jiang JH; Chen H; Xu Y; Fu Y
    Adv Sci (Weinh); 2023 Nov; 10(33):e2304992. PubMed ID: 37737626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-sensing nanomechanical resonator built on a single-walled carbon nanotube.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nano Lett; 2008 Nov; 8(11):3746-9. PubMed ID: 18950234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Characteristics of a Nanomechanical Resonator Coupled to a Superconducting LC Resonator in Quantum Computing Systems.
    Choi JR; Ju S
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.
    Jin L; Li L
    Nanoscale Res Lett; 2017 Dec; 12(1):331. PubMed ID: 28476086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional measurement of resonance in MEMS resonators using stroboscopic differential interference contrast microscopy.
    Iimori M; Zhang Y
    Opt Express; 2022 Jul; 30(15):26072-26081. PubMed ID: 36236804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube resonator in liquid.
    Sawano S; Arie T; Akita S
    Nano Lett; 2010 Sep; 10(9):3395-8. PubMed ID: 20681632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire.
    Khaderbad MA; Choi Y; Hiralal P; Aziz A; Wang N; Durkan C; Thiruvenkatanathan P; Amaratunga GA; Rao VR; Seshia AA
    Nanotechnology; 2012 Jan; 23(2):025501. PubMed ID: 22166842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the chaotic boundary of a membrane resonator with nanowire arrays.
    Yildirim T; Cho K; Wu X; Lu Y
    Nanoscale; 2017 Nov; 9(44):17524-17532. PubMed ID: 29110001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.