These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

809 related articles for article (PubMed ID: 30721557)

  • 1. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries.
    Pei F; Fu A; Ye W; Peng J; Fang X; Wang MS; Zheng N
    ACS Nano; 2019 Jul; 13(7):8337-8346. PubMed ID: 31287646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistically Enhanced Interfacial Interaction to Polysulfide via N,O Dual-Doped Highly Porous Carbon Microrods for Advanced Lithium-Sulfur Batteries.
    Wang N; Xu Z; Xu X; Liao T; Tang B; Bai Z; Dou S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13573-13580. PubMed ID: 29616547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries.
    Cheng Q; Yin Z; Pan S; Zhang G; Pan Z; Yu X; Fang Y; Rao H; Zhong X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43844-43853. PubMed ID: 32897698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries.
    Zhao Y; Ye Y; Wu F; Li Y; Li L; Chen R
    Adv Mater; 2019 Mar; 31(12):e1806532. PubMed ID: 30672032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing high-energy lithium-sulfur batteries.
    Seh ZW; Sun Y; Zhang Q; Cui Y
    Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization Strategies of Lithium Metal Anode Toward Dendrite-Free Lithium-Sulfur Batteries.
    Liu Z; Sun L; Liu X; Lu Q
    Chemistry; 2024 Oct; 30(60):e202402032. PubMed ID: 39149833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co
    Zeng P; Liu C; Zhao X; Yuan C; Chen Y; Lin H; Zhang L
    ACS Nano; 2020 Sep; 14(9):11558-11569. PubMed ID: 32865976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries.
    Liang Z; Shen J; Xu X; Li F; Liu J; Yuan B; Yu Y; Zhu M
    Adv Mater; 2022 Jul; 34(30):e2200102. PubMed ID: 35238103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.