BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30721661)

  • 1. A highly efficient heptamethine cyanine antenna for photosynthetic Reaction Center: From chemical design to ultrafast energy transfer investigation of the hybrid system.
    la Gatta S; Milano F; Farinola GM; Agostiano A; Di Donato M; Lapini A; Foggi P; Trotta M; Ragni R
    Biochim Biophys Acta Bioenerg; 2019 Apr; 1860(4):350-359. PubMed ID: 30721661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.
    Hassan Omar O; la Gatta S; Tangorra RR; Milano F; Ragni R; Operamolla A; Argazzi R; Chiorboli C; Agostiano A; Trotta M; Farinola GM
    Bioconjug Chem; 2016 Jul; 27(7):1614-23. PubMed ID: 27245093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights into the Mechanism of Uphill Excitation Energy Transfer from Core Antenna to Reaction Center in Purple Photosynthetic Bacteria.
    Tan LM; Yu J; Kawakami T; Kobayashi M; Wang P; Wang-Otomo ZY; Zhang JP
    J Phys Chem Lett; 2018 Jun; 9(12):3278-3284. PubMed ID: 29863354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides.
    Chenchiliyan M; Timpmann K; Jalviste E; Adams PG; Hunter CN; Freiberg A
    Biochim Biophys Acta; 2016 Jun; 1857(6):634-42. PubMed ID: 27013332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous Production of the Photosynthetic Reaction Center and Light Harvesting 1 Complexes of the Thermophile Thermochromatium tepidum in the Mesophile Rhodobacter sphaeroides and Thermal Stability of a Hybrid Core Complex.
    Jun D; Huang V; Beatty JT
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28821545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Biohybrid Construct for Photoconversion Based on a Bacterial Reaction Center Covalently Bound to Cytochrome
    Buscemi G; Trotta M; Vona D; Farinola GM; Milano F; Ragni R
    Bioconjug Chem; 2023 Apr; 34(4):629-637. PubMed ID: 36896985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-harvesting complex 1 stabilizes P+QB- charge separation in reaction centers of Rhodobacter sphaeroides.
    Francia F; Dezi M; Rebecchi A; Mallardi A; Palazzo G; Melandri BA; Venturoli G
    Biochemistry; 2004 Nov; 43(44):14199-210. PubMed ID: 15518570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides.
    Dezi M; Francia F; Mallardi A; Colafemmina G; Palazzo G; Venturoli G
    Biochim Biophys Acta; 2007 Aug; 1767(8):1041-56. PubMed ID: 17588528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers.
    Woronowicz K; Sha D; Frese RN; Niederman RA
    Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Photocurrent Generation in Photosynthetic Reaction Center-Based Photoelectrochemical Cells with Biomimetic DNA Antenna.
    Carey AM; Zhang H; Liu M; Sharaf D; Akram N; Yan H; Lin S; Woodbury NW; Seo DK
    ChemSusChem; 2017 Nov; 10(22):4457-4460. PubMed ID: 28929590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large photocurrent response and external quantum efficiency in biophotoelectrochemical cells incorporating reaction center plus light harvesting complexes.
    Yaghoubi H; Lafalce E; Jun D; Jiang X; Beatty JT; Takshi A
    Biomacromolecules; 2015 Apr; 16(4):1112-8. PubMed ID: 25798701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre.
    Grayson KJ; Faries KM; Huang X; Qian P; Dilbeck P; Martin EC; Hitchcock A; Vasilev C; Yuen JM; Niedzwiedzki DM; Leggett GJ; Holten D; Kirmaier C; Neil Hunter C
    Nat Commun; 2017 Jan; 8():13972. PubMed ID: 28054547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex.
    Crouch LI; Jones MR
    Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting.
    Springer JW; Parkes-Loach PS; Reddy KR; Krayer M; Jiao J; Lee GM; Niedzwiedzki DM; Harris MA; Kirmaier C; Bocian DF; Lindsey JS; Holten D; Loach PA
    J Am Chem Soc; 2012 Mar; 134(10):4589-99. PubMed ID: 22375881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells.
    Dahlberg PD; Ting PC; Massey SC; Allodi MA; Martin EC; Hunter CN; Engel GS
    Nat Commun; 2017 Oct; 8(1):988. PubMed ID: 29042567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minding the Gap between Plant and Bacterial Photosynthesis within a Self-Assembling Biohybrid Photosystem.
    Liu J; Mantell J; Jones MR
    ACS Nano; 2020 Apr; 14(4):4536-4549. PubMed ID: 32227861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and Spectroscopic Characterizations of a Hybrid Light-Harvesting Reaction Center Core Complex.
    Kimura Y; Hashimoto K; Akimoto S; Takenouchi M; Suzuki K; Kishi R; Imanishi M; Takenaka S; Madigan MT; Nagashima KVP; Wang-Otomo ZY
    Biochemistry; 2018 Jul; 57(30):4496-4503. PubMed ID: 29965735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode.
    Kondo M; Iida K; Dewa T; Tanaka H; Ogawa T; Nagashima S; Nagashima KV; Shimada K; Hashimoto H; Gardiner AT; Cogdell RJ; Nango M
    Biomacromolecules; 2012 Feb; 13(2):432-8. PubMed ID: 22239547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides.
    Freiberg A; Chenchiliyan M; Rätsep M; Timpmann K
    Biochim Biophys Acta; 2016 Nov; 1857(11):1727-1733. PubMed ID: 27514285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.