These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30721785)

  • 1. Engineering of gradient osteochondral tissue: From nature to lab.
    Ansari S; Khorshidi S; Karkhaneh A
    Acta Biomater; 2019 Mar; 87():41-54. PubMed ID: 30721785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in Osteochondral Regeneration with Engineering Strategies.
    Gao H; Pan Q; Dong W; Yao Y
    Ann Biomed Eng; 2022 Oct; 50(10):1232-1242. PubMed ID: 35994165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering.
    Li Z; Jia S; Xiong Z; Long Q; Yan S; Hao F; Liu J; Yuan Z
    J Biosci Bioeng; 2018 Sep; 126(3):389-396. PubMed ID: 29685821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally graded hydrogels with opposing biochemical cues for osteochondral tissue engineering.
    Mahajan A; Zaidi ZS; Shukla A; Saxena R; Katti DS
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38697073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering.
    Fu L; Zhang L; Zhang X; Chen L; Cai Q; Yang X
    Biomed Mater; 2021 Feb; 16(2):022006. PubMed ID: 33440367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological characteristics of cartilage-bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold.
    Bian W; Lian Q; Li D; Wang J; Zhang W; Jin Z; Qiu Y
    Biomed Eng Online; 2016 Jul; 15(1):82. PubMed ID: 27418247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro/Nano Scaffolds for Osteochondral Tissue Engineering.
    Martins A; Reis RL; Neves NM
    Adv Exp Med Biol; 2018; 1058():125-139. PubMed ID: 29691820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the subchondral bone phase of a multi-layered osteochondral construct to support bone healing and a cartilage analog.
    Marionneaux A; Walters J; Guo H; Mercuri J
    Acta Biomater; 2018 Sep; 78():351-364. PubMed ID: 30099201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteochondral tissue engineering: current strategies and challenges.
    Nukavarapu SP; Dorcemus DL
    Biotechnol Adv; 2013; 31(5):706-21. PubMed ID: 23174560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration.
    Longley R; Ferreira AM; Gentile P
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.
    Giannoni P; Lazzarini E; Ceseracciu L; Barone AC; Quarto R; Scaglione S
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1182-92. PubMed ID: 23172816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteochondral Interface: Regenerative Engineering and Challenges.
    Yildirim N; Amanzhanova A; Kulzhanova G; Mukasheva F; Erisken C
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1205-1223. PubMed ID: 36752057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of Articular Osteochondral Defects Using an Integrated and Biomimetic Trilayered Scaffold.
    Zhai C; Fei H; Hu J; Wang Z; Xu S; Zuo Q; Li Z; Wang Z; Liang W; Fan W
    Tissue Eng Part A; 2018 Nov; 24(21-22):1680-1692. PubMed ID: 29779446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration.
    Khorshidi S; Karkhaneh A
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e1974-e1990. PubMed ID: 29243352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances of nanotechnology in osteochondral regeneration.
    Deng C; Xu C; Zhou Q; Cheng Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1576. PubMed ID: 31329375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration.
    Zhang N; Wang Y; Zhang J; Guo J; He J
    Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine.
    Di Luca A; Van Blitterswijk C; Moroni L
    Birth Defects Res C Embryo Today; 2015 Mar; 105(1):34-52. PubMed ID: 25777257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model.
    Erickson AE; Sun J; Lan Levengood SK; Swanson S; Chang FC; Tsao CT; Zhang M
    Biomed Microdevices; 2019 Mar; 21(2):34. PubMed ID: 30906951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.