These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30721821)

  • 1. Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress.
    Ye C; Ali S; Sun Q; Guo M; Liu Y; Gao Y; Huo B
    Comput Biol Med; 2019 Mar; 106():140-148. PubMed ID: 30721821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and differentiation of osteoclast precursors under gradient fluid shear stress.
    Gao Y; Li T; Sun Q; Ye C; Guo M; Chen Z; Chen J; Huo B
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1731-1744. PubMed ID: 31115727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying fluid shear stress in a rocking culture dish.
    Zhou X; Liu D; You L; Wang L
    J Biomech; 2010 May; 43(8):1598-602. PubMed ID: 20185133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis on mechanical state on the osteoclasts under gradient fluid shear stress.
    Zhang X; Sun Q; Ye C; Li T; Jiao F; Gao Y; Huo B
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1067-1078. PubMed ID: 35477827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells.
    Spruell C; Baker AB
    Biotechnol Bioeng; 2013 Jun; 110(6):1782-93. PubMed ID: 23280552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-Solid Coupling Simulation of Wall Fluid Shear Stress on Cells under Gradient Fluid Flow.
    Zhang X; Gao Y; Huo B
    Appl Bionics Biomech; 2021; 2021():8340201. PubMed ID: 34899981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient fluid shear stress regulates migration of osteoclast precursors.
    Gao Y; Li T; Sun Q; Huo B
    Cell Adh Migr; 2019 Dec; 13(1):183-191. PubMed ID: 31131719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of secondary flow on biological experiments in the cone-plate viscometer: methods for estimating collision frequency, wall shear stress and inter-particle interactions in non-linear flow.
    Shankaran H; Neelamegham S
    Biorheology; 2001; 38(4):275-304. PubMed ID: 11673645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts.
    Yu W; Qu H; Hu G; Zhang Q; Song K; Guan H; Liu T; Qin J
    PLoS One; 2014; 9(2):e89966. PubMed ID: 24587156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions.
    Li T; Chen Z; Gao Y; Zhu L; Yang R; Leng H; Huo B
    J Biomech; 2020 Aug; 109():109912. PubMed ID: 32807313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue.
    Sucosky P; Padala M; Elhammali A; Balachandran K; Jo H; Yoganathan AP
    J Biomech Eng; 2008 Jun; 130(3):035001. PubMed ID: 18532871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells.
    Dreyer L; Krolitzki B; Autschbach R; Vogt P; Welte T; Ngezahayo A; Glasmacher B
    Clin Hemorheol Microcirc; 2011; 49(1-4):391-7. PubMed ID: 22214709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic shear stress in parallel-plate flow chambers.
    Bacabac RG; Smit TH; Cowin SC; Van Loon JJ; Nieuwstadt FT; Heethaar R; Klein-Nulend J
    J Biomech; 2005 Jan; 38(1):159-67. PubMed ID: 15519352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analyses of fluid flow conditions in cell culture.
    Salvi JD; Lim JY; Donahue HJ
    Tissue Eng Part C Methods; 2010 Aug; 16(4):661-70. PubMed ID: 19778171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Martinez DM; Taghipour F; Bowen BD; Haynes CA
    Biotechnol Bioeng; 2006 Dec; 95(6):1207-17. PubMed ID: 16937405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Numerical simulation of the distribution of shear stress on the bottom of parallel plate flow chamber under different inlet velocity conditions].
    Zeng Y; Liu X; Lai Y; Huang X; Mao B; Gao T; Shen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):785-9. PubMed ID: 20842845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory flow in a cone-and-plate bioreactor.
    Chung CA; Tzou MR; Ho RW
    J Biomech Eng; 2005 Aug; 127(4):601-10. PubMed ID: 16121530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers.
    Franzoni M; Cattaneo I; Ene-Iordache B; Oldani A; Righettini P; Remuzzi A
    Cytotechnology; 2016 Oct; 68(5):1885-96. PubMed ID: 26754843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.