These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30721833)

  • 1. Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing.
    Bandulasena MV; Vladisavljević GT; Benyahia B
    J Colloid Interface Sci; 2019 Apr; 542():23-32. PubMed ID: 30721833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions.
    Leister N; Vladisavljević GT; Karbstein HP
    J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective colloidal emulsion droplet regulation in flow-focusing glass capillary microfluidic device
    Jiang T; Wu H; Liu S; Yan H; Jiang H
    RSC Adv; 2024 Jan; 14(5):3250-3260. PubMed ID: 38249672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High precision microfluidic microencapsulation of bacteriophages for enteric delivery.
    Vinner GK; Malik DJ
    Res Microbiol; 2018 Nov; 169(9):522-530. PubMed ID: 29886256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.
    Akamatsu K; Kanasugi S; Nakao S; Weitz DA
    Langmuir; 2015 Jun; 31(25):7166-72. PubMed ID: 26057203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Generation of All-Aqueous Double and Triple Emulsions.
    Jeyhani M; Thevakumaran R; Abbasi N; Hwang DK; Tsai SSH
    Small; 2020 Feb; 16(7):e1906565. PubMed ID: 31985166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device.
    Hisamoto H; Nakashima Y; Kitamura C; Funano S; Yasuoka M; Morishima K; Kikutani Y; Kitamori T; Terabe S
    Anal Chem; 2004 Jun; 76(11):3222-8. PubMed ID: 15167805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates.
    Benson BR; Stone HA; Prud'homme RK
    Lab Chip; 2013 Dec; 13(23):4507-11. PubMed ID: 24122050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform.
    Di D; Qu X; Liu C; Fang L; Quan P
    Int J Pharm; 2019 Dec; 572():118831. PubMed ID: 31715344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
    Josephides DN; Sajjadi S
    Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices.
    Tran TM; Cater S; Abate AR
    Biomicrofluidics; 2014 Jan; 8(1):016502. PubMed ID: 24753732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries.
    Farley S; Ramsay K; Elvira KS
    Lab Chip; 2021 Jul; 21(14):2781-2790. PubMed ID: 34105568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets.
    Oh Y; Kim SH
    Langmuir; 2024 Sep; 40(36):19166-19175. PubMed ID: 39183643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic generation of droplets with a high loading of nanoparticles.
    Wan J; Shi L; Benson B; Bruzek MJ; Anthony JE; Sinko PJ; Prudhomme RK; Stone HA
    Langmuir; 2012 Sep; 28(37):13143-8. PubMed ID: 22934976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.