These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30722039)
21. The effects of extended nap periods on cognitive, physiological and subjective responses under simulated night shift conditions. Davy J; Göbel M Chronobiol Int; 2018 Feb; 35(2):169-187. PubMed ID: 29144168 [TBL] [Abstract][Full Text] [Related]
22. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers. Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349 [TBL] [Abstract][Full Text] [Related]
23. Time of day effects on neurobehavioral performance during chronic sleep restriction. Mollicone DJ; Van Dongen HP; Rogers NL; Banks S; Dinges DF Aviat Space Environ Med; 2010 Aug; 81(8):735-44. PubMed ID: 20681233 [TBL] [Abstract][Full Text] [Related]
24. Time course of sleep inertia dissipation in human performance and alertness. Jewett ME; Wyatt JK; Ritz-De Cecco A; Khalsa SB; Dijk DJ; Czeisler CA J Sleep Res; 1999 Mar; 8(1):1-8. PubMed ID: 10188130 [TBL] [Abstract][Full Text] [Related]
25. Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response. Van De Werken M; Giménez MC; De Vries B; Beersma DG; Van Someren EJ; Gordijn MC J Sleep Res; 2010 Sep; 19(3):425-35. PubMed ID: 20408928 [TBL] [Abstract][Full Text] [Related]
26. The effects of slow-wave sleep (SWS) deprivation and time of night on behavioral performance upon awakening. Ferrara M; De Gennaro L; Bertini M Physiol Behav; 1999 Dec 1-15; 68(1-2):55-61. PubMed ID: 10627062 [TBL] [Abstract][Full Text] [Related]
27. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Van Dongen HP; Maislin G; Mullington JM; Dinges DF Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469 [TBL] [Abstract][Full Text] [Related]
28. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules. Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594 [TBL] [Abstract][Full Text] [Related]
29. Exercise before bed does not impact sleep inertia in young healthy males. Vincent GE; Sargent C; Roach GD; Miller DJ; Kovac K; Scanlan AT; Waggoner LB; Lastella M J Sleep Res; 2020 Jun; 29(3):e12903. PubMed ID: 31621995 [TBL] [Abstract][Full Text] [Related]
30. Biomathematical modeling of fatigue due to sleep inertia. McCauley ME; McCauley P; Kalachev LV; Riedy SM; Banks S; Ecker AJ; Dinges DF; Van Dongen HPA J Theor Biol; 2024 Aug; 590():111851. PubMed ID: 38782198 [TBL] [Abstract][Full Text] [Related]
31. The impact of a short burst of exercise on sleep inertia. Kovac K; Vincent GE; Paterson JL; Reynolds A; Aisbett B; Hilditch CJ; Ferguson SA Physiol Behav; 2021 Dec; 242():113617. PubMed ID: 34606883 [TBL] [Abstract][Full Text] [Related]
32. Effects of sleep inertia after daytime naps vary with executive load and time of day. Groeger JA; Lo JC; Burns CG; Dijk DJ Behav Neurosci; 2011 Apr; 125(2):252-60. PubMed ID: 21463024 [TBL] [Abstract][Full Text] [Related]
33. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure. Gorgoni M; Ferrara M; D'Atri A; Lauri G; Scarpelli S; Truglia I; De Gennaro L Sleep Med; 2015 Jul; 16(7):883-90. PubMed ID: 26004680 [TBL] [Abstract][Full Text] [Related]
34. Limited Efficacy of Caffeine and Recovery Costs During and Following 5 Days of Chronic Sleep Restriction. Doty TJ; So CJ; Bergman EM; Trach SK; Ratcliffe RH; Yarnell AM; Capaldi VF; Moon JE; Balkin TJ; Quartana PJ Sleep; 2017 Dec; 40(12):. PubMed ID: 29029309 [TBL] [Abstract][Full Text] [Related]
35. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Pejovic S; Basta M; Vgontzas AN; Kritikou I; Shaffer ML; Tsaoussoglou M; Stiffler D; Stefanakis Z; Bixler EO; Chrousos GP Am J Physiol Endocrinol Metab; 2013 Oct; 305(7):E890-6. PubMed ID: 23941878 [TBL] [Abstract][Full Text] [Related]
36. Circadian and sleep episode duration influences on cognitive performance following the process of awakening. Matchock RL Int Rev Neurobiol; 2010; 93():129-51. PubMed ID: 20970004 [TBL] [Abstract][Full Text] [Related]
37. The effects of nighttime napping on sleep, sleep inertia, and performance during simulated 16 h night work: a pilot study. Oriyama S; Miyakoshi Y J Occup Health; 2018 Mar; 60(2):172-181. PubMed ID: 29269604 [TBL] [Abstract][Full Text] [Related]
38. Temporal dynamics of ocular indicators of sleepiness across sleep restriction. Ftouni S; Rahman SA; Crowley KE; Anderson C; Rajaratnam SM; Lockley SW J Biol Rhythms; 2013 Dec; 28(6):412-24. PubMed ID: 24336419 [TBL] [Abstract][Full Text] [Related]
39. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100 [TBL] [Abstract][Full Text] [Related]
40. The impact of short night-time naps on performance, sleepiness and mood during a simulated night shift. Centofanti SA; Hilditch CJ; Dorrian J; Banks S Chronobiol Int; 2016; 33(6):706-15. PubMed ID: 27077524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]