These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30722053)
1. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Yu X; Ma Y; Harding EC; Yustos R; Vyssotski AL; Franks NP; Wisden W Sleep; 2019 May; 42(5):. PubMed ID: 30722053 [TBL] [Abstract][Full Text] [Related]
2. Wake-Promoting and EEG Spectral Effects of Modafinil After Acute or Chronic Administration in the R6/2 Mouse Model of Huntington's Disease. Vas S; Casey JM; Schneider WT; Kalmar L; Morton AJ Neurotherapeutics; 2020 Jul; 17(3):1075-1086. PubMed ID: 32297185 [TBL] [Abstract][Full Text] [Related]
3. Chemogenetic modulation of histaminergic neurons in the tuberomamillary nucleus alters territorial aggression and wakefulness. Naganuma F; Nakamura T; Kuroyanagi H; Tanaka M; Yoshikawa T; Yanai K; Okamura N Sci Rep; 2021 Sep; 11(1):17935. PubMed ID: 34504120 [TBL] [Abstract][Full Text] [Related]
4. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. Parmentier R; Ohtsu H; Djebbara-Hannas Z; Valatx JL; Watanabe T; Lin JS J Neurosci; 2002 Sep; 22(17):7695-711. PubMed ID: 12196593 [TBL] [Abstract][Full Text] [Related]
5. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Parmentier R; Zhao Y; Perier M; Akaoka H; Lintunen M; Hou Y; Panula P; Watanabe T; Franco P; Lin JS Neuropharmacology; 2016 Jul; 106():20-34. PubMed ID: 26723880 [TBL] [Abstract][Full Text] [Related]
6. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. Anaclet C; Parmentier R; Ouk K; Guidon G; Buda C; Sastre JP; Akaoka H; Sergeeva OA; Yanagisawa M; Ohtsu H; Franco P; Haas HL; Lin JS J Neurosci; 2009 Nov; 29(46):14423-38. PubMed ID: 19923277 [TBL] [Abstract][Full Text] [Related]
7. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Parmentier R; Anaclet C; Guhennec C; Brousseau E; Bricout D; Giboulot T; Bozyczko-Coyne D; Spiegel K; Ohtsu H; Williams M; Lin JS Biochem Pharmacol; 2007 Apr; 73(8):1157-71. PubMed ID: 17288995 [TBL] [Abstract][Full Text] [Related]
8. Effect of a novel histamine subtype-3 receptor inverse agonist and modafinil on EEG power spectra during sleep deprivation and recovery sleep in male volunteers. James LM; Iannone R; Palcza J; Renger JJ; Calder N; Cerchio K; Gottesdiener K; Hargreaves R; Murphy MG; Boyle J; Dijk DJ Psychopharmacology (Berl); 2011 Jun; 215(4):643-53. PubMed ID: 21301819 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of THN102 (a combination of modafinil and flecainide) on vigilance and cognition during 40-hour total sleep deprivation in healthy subjects: Glial connexins as a therapeutic target. Sauvet F; Erblang M; Gomez-Merino D; Rabat A; Guillard M; Dubourdieu D; Lefloch H; Drogou C; Van Beers P; Bougard C; Bourrrilhon C; Arnal P; Rein W; Mouthon F; Brunner-Ferber F; Leger D; Dauvilliers Y; Chennaoui M; Charvériat M Br J Clin Pharmacol; 2019 Nov; 85(11):2623-2633. PubMed ID: 31419329 [TBL] [Abstract][Full Text] [Related]
10. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. Qu WM; Xu XH; Yan MM; Wang YQ; Urade Y; Huang ZL J Neurosci; 2010 Mar; 30(12):4382-9. PubMed ID: 20335474 [TBL] [Abstract][Full Text] [Related]
11. Glutamate Activates the Histaminergic Tuberomammillary Nucleus and Increases Wakefulness in Rats. Yin D; Dong H; Wang TX; Hu ZZ; Cheng NN; Qu WM; Huang ZL Neuroscience; 2019 Aug; 413():86-98. PubMed ID: 31202706 [TBL] [Abstract][Full Text] [Related]
12. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice. Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729 [TBL] [Abstract][Full Text] [Related]
14. High cortical delta power correlates with aggravated allodynia by activating anterior cingulate cortex GABAergic neurons in neuropathic pain mice. Li YD; Ge J; Luo YJ; Xu W; Wang J; Lazarus M; Hong ZY; Qu WM; Huang ZL Pain; 2020 Feb; 161(2):288-299. PubMed ID: 31651580 [TBL] [Abstract][Full Text] [Related]
15. Recovery Mimicking "Ideal" CPAP Adherence Does Not Improve Wakefulness or Cognition in Chronic Murine Models of OSA: Effect of Wake-Promoting Agents. Badran M; Puech C; Barrow MB; Runion AR; Gozal D Arch Bronconeumol; 2023 Dec; 59(12):805-812. PubMed ID: 37783638 [TBL] [Abstract][Full Text] [Related]
17. The unfinished journey with modafinil and discovery of a novel population of modafinil-immunoreactive neurons. Lin JS; Roussel B; Gaspar A; Zhao Y; Hou Y; Schmidt M; Jouvet A; Jouvet M Sleep Med; 2018 Sep; 49():40-52. PubMed ID: 30172629 [TBL] [Abstract][Full Text] [Related]
18. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. Fujita A; Bonnavion P; Wilson MH; Mickelsen LE; Bloit J; de Lecea L; Jackson AC J Neurosci; 2017 Sep; 37(39):9574-9592. PubMed ID: 28874450 [TBL] [Abstract][Full Text] [Related]
19. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. Bodenmann S; Landolt HP Sleep; 2010 Aug; 33(8):1027-35. PubMed ID: 20815183 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of the Tuberomammillary Nucleus by GABA Xie JF; Fan K; Wang C; Xie P; Hou M; Xin L; Cui GF; Wang LX; Shao YF; Hou YP Neurochem Res; 2017 Aug; 42(8):2314-2325. PubMed ID: 28365867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]