These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 30722061)

  • 21. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice.
    Kodani S; Soya S; Sakurai T
    J Neurosci; 2017 Jul; 37(30):7164-7176. PubMed ID: 28642284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GABAergic Neurons in the Dorsal-Intermediate Lateral Septum Regulate Sleep-Wakefulness and Anesthesia in Mice.
    Wang D; Guo Q; Zhou Y; Xu Z; Hu SW; Kong XX; Yu YM; Yang JX; Zhang H; Ding HL; Cao JL
    Anesthesiology; 2021 Sep; 135(3):463-481. PubMed ID: 34259824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons.
    Cox J; Pinto L; Dan Y
    Nat Commun; 2016 Feb; 7():10763. PubMed ID: 26911837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice.
    Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M
    J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder.
    Luppi PH; Clément O; Sapin E; Gervasoni D; Peyron C; Léger L; Salvert D; Fort P
    Sleep Med Rev; 2011 Jun; 15(3):153-63. PubMed ID: 21115377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A role of prefrontal cortico-hypothalamic projections in wake promotion.
    Zhong H; Xu H; Li X; Xie RG; Shi Y; Wang Y; Tong L; Zhu Q; Han J; Tao H; Zhang L; Hu Z; Zhang X; Gu N; Dong H; Xu X
    Cereb Cortex; 2023 Mar; 33(6):3026-3042. PubMed ID: 35764255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities.
    Van Someren EJ
    Chronobiol Int; 2000 May; 17(3):313-54. PubMed ID: 10841209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Not a single but multiple populations of GABAergic neurons control sleep.
    Luppi PH; Peyron C; Fort P
    Sleep Med Rev; 2017 Apr; 32():85-94. PubMed ID: 27083772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homeostatic, circadian, and emotional regulation of sleep.
    Saper CB; Cano G; Scammell TE
    J Comp Neurol; 2005 Dec; 493(1):92-8. PubMed ID: 16254994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep-wake cycle, sleep-related disturbances, and sleep disorders: a chronobiological approach.
    Kunz D; Herrmann WM
    Compr Psychiatry; 2000; 41(2 Suppl 1):104-15. PubMed ID: 10746912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling interindividual differences in spontaneous internal desynchrony patterns.
    Gleit RD; Diniz Behn CG; Booth V
    J Biol Rhythms; 2013 Oct; 28(5):339-55. PubMed ID: 24132060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice.
    Wang RF; Guo H; Jiang SY; Liu ZL; Qu WM; Huang ZL; Wang L
    J Neurosci Res; 2021 Jun; 99(6):1689-1703. PubMed ID: 33713502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circuit mechanisms and computational models of REM sleep.
    Héricé C; Patel AA; Sakata S
    Neurosci Res; 2019 Mar; 140():77-92. PubMed ID: 30118737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit.
    Liu D; Dan Y
    Annu Rev Neurosci; 2019 Jul; 42():27-46. PubMed ID: 30699051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control.
    Erickson ETM; Ferrari LL; Gompf HS; Anaclet C
    Front Neurosci; 2019; 13():755. PubMed ID: 31417341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Sleep and circadian rhythms].
    Pickering L; Thorstensen EW; Riedel C; Jennum PJ
    Ugeskr Laeger; 2018 Sep; 180(36):. PubMed ID: 30348254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.