BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 30722079)

  • 1. Fibrin Modulates Shear-Induced NETosis in Sterile Occlusive Thrombi Formed under Haemodynamic Flow.
    Yu X; Diamond SL
    Thromb Haemost; 2019 Apr; 119(4):586-593. PubMed ID: 30722079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions.
    Yu X; Tan J; Diamond SL
    J Thromb Haemost; 2018 Feb; 16(2):316-329. PubMed ID: 29156107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment.
    Varjú I; Longstaff C; Szabó L; Farkas ÁZ; Varga-Szabó VJ; Tanka-Salamon A; Machovich R; Kolev K
    Thromb Haemost; 2015 Jun; 113(6):1289-98. PubMed ID: 25789443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin.
    Colace TV; Muthard RW; Diamond SL
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1466-76. PubMed ID: 22516070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion.
    Zhou P; Li T; Jin J; Liu Y; Li B; Sun Q; Tian J; Zhao H; Liu Z; Ma S; Zhang S; Novakovic VA; Shi J; Hu S
    EBioMedicine; 2020 Mar; 53():102671. PubMed ID: 32114386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke.
    Zhang S; Cao Y; Du J; Liu H; Chen X; Li M; Xiang M; Wang C; Wu X; Liu L; Wang C; Wu Y; Li Z; Fang S; Shi J; Wang L
    FASEB J; 2021 Sep; 35(9):e21835. PubMed ID: 34449927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Diabetes Mellitus on Fibrin Clot Structure and Mechanics in a Model of Acute Neutrophil Extracellular Traps (NETs) Formation.
    de Vries JJ; Hoppenbrouwers T; Martinez-Torres C; Majied R; Özcan B; van Hoek M; Leebeek FWG; Rijken DC; Koenderink GH; de Maat MPM
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32993159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban.
    Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J
    Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Modeling of Thrombolysis.
    Loyau S; Ho-Tin-Noé B; Bourrienne MC; Boulaftali Y; Jandrot-Perrus M
    Arterioscler Thromb Vasc Biol; 2018 Nov; 38(11):2626-2637. PubMed ID: 30354249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathrombus Fibrin Attenuates Spatial Sorting of Phosphatidylserine Exposing Platelets during Clotting Under Flow.
    Trigani KT; Diamond SL
    Thromb Haemost; 2021 Jan; 121(1):46-57. PubMed ID: 32961573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin, γ'-fibrinogen, and transclot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound.
    Muthard RW; Welsh JD; Brass LF; Diamond SL
    Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):645-54. PubMed ID: 25614284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.
    Martinod K; Witsch T; Farley K; Gallant M; Remold-O'Donnell E; Wagner DD
    J Thromb Haemost; 2016 Mar; 14(3):551-8. PubMed ID: 26712312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of thrombosis by neutrophils and extracellular nucleosome networks.
    Pfeiler S; Stark K; Massberg S; Engelmann B
    Haematologica; 2017 Feb; 102(2):206-213. PubMed ID: 27927771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps.
    Varjú I; Kolev K
    Thromb Res; 2019 Oct; 182():1-11. PubMed ID: 31415922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canine Neutrophil Extracellular Traps Enhance Clot Formation and Delay Lysis.
    Jeffery U; LeVine DN
    Vet Pathol; 2018 Jan; 55(1):116-123. PubMed ID: 28346125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow and delta-P dictate where thrombin, fibrin, and von Willebrand Factor will be found.
    Diamond SL
    Thromb Res; 2016 May; 141 Suppl 2():S22-4. PubMed ID: 27207416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil enhancement of fibrin deposition under flow through platelet-dependent and -independent mechanisms.
    Goel MS; Diamond SL
    Arterioscler Thromb Vasc Biol; 2001 Dec; 21(12):2093-8. PubMed ID: 11742890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Procoagulant role of neutrophil extracellular traps in patients with gastric cancer.
    Yang C; Sun W; Cui W; Li X; Yao J; Jia X; Li C; Wu H; Hu Z; Zou X
    Int J Clin Exp Pathol; 2015; 8(11):14075-86. PubMed ID: 26823721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutrophil cathepsin G promotes prothrombinase and fibrin formation under flow conditions by activating fibrinogen-adherent platelets.
    Goel MS; Diamond SL
    J Biol Chem; 2003 Mar; 278(11):9458-63. PubMed ID: 12524437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Thrombin Generation and Flux from Clots during Whole Human Blood Flow over Collagen/Tissue Factor Surfaces.
    Zhu S; Lu Y; Sinno T; Diamond SL
    J Biol Chem; 2016 Oct; 291(44):23027-23035. PubMed ID: 27605669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.