BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30722658)

  • 1. Construction of the FRET Pairs for the Visualization of Mitochondria Membrane Potential in Dual Emission Colors.
    Feng R; Guo L; Fang J; Jia Y; Wang X; Wei Q; Yu X
    Anal Chem; 2019 Mar; 91(5):3704-3709. PubMed ID: 30722658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring mitochondrial membrane potential by FRET: Development of fluorescent probes enabling ΔΨ
    Sun J; Tian M; Lin W
    Anal Chim Acta; 2020 Feb; 1097():196-203. PubMed ID: 31910960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Probes for the Visualization of Cell Viability.
    Tian M; Ma Y; Lin W
    Acc Chem Res; 2019 Aug; 52(8):2147-2157. PubMed ID: 31335119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based mitochondria-targetable dual-excitation ratiometric fluorescent probe for monitoring hydrogen sulfide in living cells.
    Yuan L; Zuo QP
    Chem Asian J; 2014 Jun; 9(6):1544-9. PubMed ID: 24692234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Mitophagy via the FRET Mechanism: Visualizing Mitochondria, Lysosomes, and Autolysosomes in Three Different Sets of Fluorescence Signals.
    Lu Q; Li W; Chen K; Tian M
    Anal Chem; 2021 Jul; 93(27):9471-9479. PubMed ID: 34180674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive use of FRET in biological imaging.
    Arai Y; Nagai T
    Microscopy (Oxf); 2013 Aug; 62(4):419-28. PubMed ID: 23797967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a fluorescent probe for reversibly monitoring mitochondrial membrane potential in living cells.
    Guo D; Sun J; Tian M; Lin W
    Anal Methods; 2021 Apr; 13(14):1715-1719. PubMed ID: 33861238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically Monitoring Cell Viability in a Dual-Color Mode: Construction of an Aggregation/Monomer-Based Probe Capable of Reversible Mitochondria-Nucleus Migration.
    Tian M; Sun J; Dong B; Lin W
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16506-16510. PubMed ID: 30371018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.
    Mustafa S; Hannagan J; Rigby P; Pfleger K; Corry B
    J Biomed Opt; 2013 Feb; 18(2):26024. PubMed ID: 23423332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence detection of MMP-9. II. Ratiometric FRET-based sensing with dually labeled specific peptide.
    Fudala R; Rich R; Mukerjee A; Ranjan AP; Vishwanatha JK; Kurdowska AK; Gryczynski Z; Borejdo J; Gryczynski I
    Curr Pharm Biotechnol; 2014; 14(13):1134-8. PubMed ID: 22339171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Vitro Characterization of mCerulean3_mRuby3 as a Novel FRET Pair with Favorable Bleed-Through Characteristics.
    Erismann-Ebner K; Marowsky A; Arand M
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30823443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel highly selective and reversible chemosensors based on dual-ratiometric fluorescent electrospun nanofibers with pH- and Fe(3+)-modulated multicolor fluorescence emission.
    Chen BY; Kuo CC; Huang YS; Lu ST; Liang FC; Jiang DH
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2797-808. PubMed ID: 25585636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A
    Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-photon excited red-emissive probe for imaging mitochondria with high fidelity and its application in monitoring mitochondrial depolarization via FRET.
    Sun J; Tian M; Lin W
    Analyst; 2019 Mar; 144(7):2387-2392. PubMed ID: 30801605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications.
    Gong YJ; Zhang XB; Zhang CC; Luo AL; Fu T; Tan W; Shen GL; Yu RQ
    Anal Chem; 2012 Dec; 84(24):10777-84. PubMed ID: 23171399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture.
    Wu L; Guo QS; Liu YQ; Sun QJ
    Anal Chem; 2015 May; 87(10):5318-23. PubMed ID: 25932651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.