BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30723610)

  • 1. Kelpie: generating full-length 'amplicons' from whole-metagenome datasets.
    Greenfield P; Tran-Dinh N; Midgley D
    PeerJ; 2019; 6():e6174. PubMed ID: 30723610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs.
    Fischer MA; Güllert S; Neulinger SC; Streit WR; Schmitz RA
    Front Microbiol; 2016; 7():1297. PubMed ID: 27602022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool.
    Zou B; Li J; Zhou Q; Quan ZX
    PLoS One; 2017; 12(3):e0174609. PubMed ID: 28350876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiomics Characterization of the Canada Goose Fecal Microbiome Reveals Selective Efficacy of Simulated Metagenomes.
    Gil JC; Hird SM
    Microbiol Spectr; 2022 Dec; 10(6):e0238422. PubMed ID: 36318011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating and Improving Small Subunit rRNA PCR Primer Coverage for Bacteria, Archaea, and Eukaryotes Using Metagenomes from Global Ocean Surveys.
    McNichol J; Berube PM; Biller SJ; Fuhrman JA
    mSystems; 2021 Jun; 6(3):e0056521. PubMed ID: 34060911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome.
    Nossa CW; Oberdorf WE; Yang L; Aas JA; Paster BJ; Desantis TZ; Brodie EL; Malamud D; Poles MA; Pei Z
    World J Gastroenterol; 2010 Sep; 16(33):4135-44. PubMed ID: 20806429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of metagenomic classifiers for long-read sequencing datasets.
    Marić J; Križanović K; Riondet S; Nagarajan N; Šikić M
    BMC Bioinformatics; 2024 Jan; 25(1):15. PubMed ID: 38212694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics.
    Poretsky R; Rodriguez-R LM; Luo C; Tsementzi D; Konstantinidis KT
    PLoS One; 2014; 9(4):e93827. PubMed ID: 24714158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning models for bacteria taxonomic classification of metagenomic data.
    Fiannaca A; La Paglia L; La Rosa M; Lo Bosco G; Renda G; Rizzo R; Gaglio S; Urso A
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):198. PubMed ID: 30066629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplidiff: an optimized amplicon sequencing approach to estimating lineage abundances in viral metagenomes.
    Bemmelen JV; Smyth DS; Baaijens JA
    BMC Bioinformatics; 2024 Mar; 25(1):126. PubMed ID: 38521945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing and Interpreting the Metagenome Heterogeneity With Power Law.
    Ma ZS
    Front Microbiol; 2020; 11():648. PubMed ID: 32435232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools.
    Rotimi AM; Pierneef R; Reva ON
    BMC Bioinformatics; 2018 Aug; 19(1):309. PubMed ID: 30165813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved
    Gionfriddo CM; Wymore AM; Jones DS; Wilpiszeski RL; Lynes MM; Christensen GA; Soren A; Gilmour CC; Podar M; Elias DA
    Front Microbiol; 2020; 11():541554. PubMed ID: 33123100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets.
    Bengtsson J; Hartmann M; Unterseher M; Vaishampayan P; Abarenkov K; Durso L; Bik EM; Garey JR; Eriksson KM; Nilsson RH
    Res Microbiol; 2012 Jul; 163(6-7):407-12. PubMed ID: 22824070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MetaCAA: A clustering-aided methodology for efficient assembly of metagenomic datasets.
    Reddy RM; Mohammed MH; Mande SS
    Genomics; 2014; 103(2-3):161-8. PubMed ID: 24607570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences.
    Narayan NR; Weinmaier T; Laserna-Mendieta EJ; Claesson MJ; Shanahan F; Dabbagh K; Iwai S; DeSantis TZ
    BMC Genomics; 2020 Jan; 21(1):56. PubMed ID: 31952477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.