These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 30723851)
1. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Zhao Z; Ding C; Wang Y; Tan H; Li J Biomater Sci; 2019 Mar; 7(4):1643-1651. PubMed ID: 30723851 [TBL] [Abstract][Full Text] [Related]
2. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935 [TBL] [Abstract][Full Text] [Related]
3. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Peng X; Han Q; Zhou X; Chen Y; Huang X; Guo X; Peng R; Wang H; Peng X; Cheng L Drug Deliv; 2022 Dec; 29(1):561-573. PubMed ID: 35156501 [TBL] [Abstract][Full Text] [Related]
4. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
5. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731 [TBL] [Abstract][Full Text] [Related]
6. Silica nanoparticles containing nano-silver and chlorhexidine respond to pH to suppress biofilm acids and modulate biofilms toward a non-cariogenic composition. Wang S; Fang L; Zhou H; Wang M; Zheng H; Wang Y; Weir MD; Masri R; Oates TW; Cheng L; Xu HHK; Liu F Dent Mater; 2024 Feb; 40(2):179-189. PubMed ID: 37951751 [TBL] [Abstract][Full Text] [Related]
7. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Lu MM; Ge Y; Qiu J; Shao D; Zhang Y; Bai J; Zheng X; Chang ZM; Wang Z; Dong WF; Tang CB Int J Nanomedicine; 2018; 13():7697-7709. PubMed ID: 30538453 [TBL] [Abstract][Full Text] [Related]
8. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
9. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. Guo R; Li K; Tian B; Wang C; Chen X; Jiang X; He H; Hong W J Nanobiotechnology; 2021 Aug; 19(1):232. PubMed ID: 34362397 [TBL] [Abstract][Full Text] [Related]
10. Formation of persisters in Streptococcus mutans biofilms induced by antibacterial dental monomer. Wang S; Zhou C; Ren B; Li X; Weir MD; Masri RM; Oates TW; Cheng L; Xu HKH J Mater Sci Mater Med; 2017 Oct; 28(11):178. PubMed ID: 28980112 [TBL] [Abstract][Full Text] [Related]
11. Cationic Amphiphilic Polymers with Antimicrobial Activity for Oral Care Applications: Eradication of S. mutans Biofilm. Takahashi H; Nadres ET; Kuroda K Biomacromolecules; 2017 Jan; 18(1):257-265. PubMed ID: 27992189 [TBL] [Abstract][Full Text] [Related]
13. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Liu GY; Li M; Zhu CS; Jin Q; Zhang ZC; Ji J Macromol Biosci; 2014 Sep; 14(9):1280-90. PubMed ID: 24866398 [TBL] [Abstract][Full Text] [Related]
14. Inhibited biofilm formation and improved antibacterial activity of a novel nanoemulsion against cariogenic Streptococcus mutans in vitro and in vivo. Li YF; Sun HW; Gao R; Liu KY; Zhang HQ; Fu QH; Qing SL; Guo G; Zou QM Int J Nanomedicine; 2015; 10():447-62. PubMed ID: 25624759 [TBL] [Abstract][Full Text] [Related]
15. Smart pH-responsive polymeric micelles for programmed oral delivery of insulin. Hu WY; Wu ZM; Yang QQ; Liu YJ; Li J; Zhang CY Colloids Surf B Biointerfaces; 2019 Nov; 183():110443. PubMed ID: 31445358 [TBL] [Abstract][Full Text] [Related]
16. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Yang X; Grailer JJ; Pilla S; Steeber DA; Gong S Bioconjug Chem; 2010 Mar; 21(3):496-504. PubMed ID: 20163170 [TBL] [Abstract][Full Text] [Related]
17. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Yao Y; Zhao L; Yang J; Yang J Biomacromolecules; 2012 Jun; 13(6):1837-44. PubMed ID: 22537190 [TBL] [Abstract][Full Text] [Related]
18. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665 [TBL] [Abstract][Full Text] [Related]
19. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Namivandi-Zangeneh R; Yang Y; Xu S; Wong EHH; Boyer C Biomacromolecules; 2020 Jan; 21(1):262-272. PubMed ID: 31657209 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. Pereira CA; Costa AC; Liporoni PC; Rego MA; Jorge AO J Infect Public Health; 2016; 9(3):324-30. PubMed ID: 26614752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]