These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30724196)

  • 1. Applicability and reliability of the glucose oxidase method in assessing α-amylase activity.
    Visvanathan R; Jayathilake C; Liyanage R; Sivakanesan R
    Food Chem; 2019 Mar; 275():265-272. PubMed ID: 30724196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method).
    Visvanathan R; Jayathilake C; Liyanage R
    Food Chem; 2016 Nov; 211():853-9. PubMed ID: 27283705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose oxidase method in assessing α-amylase activity: Methodological issues on reliability and accuracy.
    Rahmani J; Sabour S
    Food Chem; 2020 Aug; 322():126769. PubMed ID: 32283364
    [No Abstract]   [Full Text] [Related]  

  • 4. A novel biosensor based on glucose oxidase for activity determination of α - amylase.
    Altug C; Mengulluoglu U; Kurt E; Kaya S; Dinckaya E
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):298-303. PubMed ID: 21574907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biosensor for the determination of amylase activity.
    Zajoncová L; Jílek M; Beranová V; Pec P
    Biosens Bioelectron; 2004 Sep; 20(2):240-5. PubMed ID: 15308227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New action pattern of a maltose-forming alpha-amylase from Streptomyces sp. and its possible application in bakery.
    Ammar YB; Matsubara T; Ito K; Iizuka M; Limpaseni T; Pongsawasdi P; Minamiura N
    J Biochem Mol Biol; 2002 Nov; 35(6):568-75. PubMed ID: 12470590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems.
    Li M; Kim JW; Peeples TL
    J Biotechnol; 2002 Jan; 93(1):15-26. PubMed ID: 11690691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications.
    Dhital S; Gidley MJ; Warren FJ
    Carbohydr Polym; 2015 Jun; 123():305-12. PubMed ID: 25843863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of human alpha-amylases with inhibitors from wheat flour.
    O'Connor CM; McGeeney KF
    Biochim Biophys Acta; 1981 Apr; 658(2):397-405. PubMed ID: 6166324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C
    Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S; Sohier JS; Feller G
    J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose absorption from starch hydrolysates in the human jejunum.
    Jones BJ; Brown BE; Loran JS; Edgerton D; Kennedy JF; Stead JA; Silk DB
    Gut; 1983 Dec; 24(12):1152-60. PubMed ID: 6605901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterisation of novel chromogenic substrates for human pancreatic alpha-amylase.
    Damager I; Numao S; Chen H; Brayer GD; Withers SG
    Carbohydr Res; 2004 Jul; 339(10):1727-37. PubMed ID: 15220082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch.
    Torabizadeh H; Montazeri E
    Carbohydr Res; 2020 Feb; 488():107904. PubMed ID: 31901816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytic activity of alpha-amylase in anaerobic digested sludge.
    Higuchi Y; Ohashi A; Imachi H; Harada H
    Water Sci Technol; 2005; 52(1-2):259-66. PubMed ID: 16180437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Amylase monitoring by a novel amperometric biosensor based on Au electrode: its optimization, characterization, and application.
    Mengulluoglu U; Altug C; Ertugrul HD; Yildiz A; Ekici EM; Dinckaya E
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Feb; 40(1-2):97-102. PubMed ID: 21838534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):289-98. PubMed ID: 14346085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties of free and immobilized alpha-amylase from Penicillium griseofulvum by solid state fermentation.
    Ertan F; Yagar H; Balkan B
    Prep Biochem Biotechnol; 2006; 36(1):81-91. PubMed ID: 16428140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry.
    Wang YC; Hu HF; Ma JW; Yan QJ; Liu HJ; Jiang ZQ
    Food Chem; 2020 Feb; 305():125447. PubMed ID: 31499289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.