These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30724199)

  • 1. Co-melting behaviour of sucrose, glucose & fructose.
    Wang Y; Truong T; Li H; Bhandari B
    Food Chem; 2019 Mar; 275():292-298. PubMed ID: 30724199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)?
    Lee JW; Thomas LC; Schmidt SJ
    J Agric Food Chem; 2011 Apr; 59(7):3306-10. PubMed ID: 21417276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting behaviour of D-sucrose, D-glucose and D-fructose.
    Hurtta M; Pitkänen I; Knuutinen J
    Carbohydr Res; 2004 Sep; 339(13):2267-73. PubMed ID: 15337455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on the melting and decomposition of sugars.
    Roos YH; Franks F; Karel M; Labuza TP; Levine H; Mathlouthi M; Reid D; Shalaev E; Slade L
    J Agric Food Chem; 2012 Oct; 60(41):10359-62; author reply 10363-71. PubMed ID: 23016831
    [No Abstract]   [Full Text] [Related]  

  • 5. Dissolution of sucrose crystals in the anhydrous sorbitol melt.
    Bhandari BR; Roos YH
    Carbohydr Res; 2003 Feb; 338(4):361-7. PubMed ID: 12559734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I).
    Lee JW; Thomas LC; Schmidt SJ
    J Agric Food Chem; 2011 Jan; 59(2):684-701. PubMed ID: 21175199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose.
    Saavedra-Leos MZ; Grajales-Lagunes A; González-García R; Toxqui-Terán A; Pérez-García SA; Abud-Archila MA; Ruiz-Cabrera MA
    J Food Sci; 2012 May; 77(5):E118-26. PubMed ID: 23163938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpy relaxation in binary amorphous mixtures containing sucrose.
    Shamblin SL; Zografi G
    Pharm Res; 1998 Dec; 15(12):1828-34. PubMed ID: 9892465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins.
    Nobre C; Santos MJ; Dominguez A; Torres D; Rocha O; Peres AM; Rocha I; Ferreira EC; Teixeira JA; Rodrigues LR
    Anal Chim Acta; 2009 Nov; 654(1):71-6. PubMed ID: 19850171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose.
    Kawai K; Hagiwara T; Takai R; Suzuki T
    Pharm Res; 2005 Mar; 22(3):490-5. PubMed ID: 15835755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental data and predictive equation of the specific heat capacity of fruit juice model systems measured with differential scanning calorimetry.
    Sánchez-Romero MA; García-Coronado P; Rivera-Bautista C; González-García R; Grajales-Lagunes A; Abud-Archila M; Ruiz-Cabrera MA
    J Food Sci; 2021 May; 86(5):1946-1962. PubMed ID: 33844286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DSC study of sucrose melting.
    Beckett ST; Francesconi MG; Geary PM; Mackenzie G; Maulny AP
    Carbohydr Res; 2006 Nov; 341(15):2591-9. PubMed ID: 16916498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation, lyophilization and solid-state properties of a pegylated protein.
    Mosharraf M; Malmberg M; Fransson J
    Int J Pharm; 2007 May; 336(2):215-32. PubMed ID: 17207591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonenzymatic browning in food models in the vicinity of the glass transition: effects of fructose, glucose, and xylose as reducing sugar.
    Lievonen SM; Laaksonen TJ; Roos YH
    J Agric Food Chem; 2002 Nov; 50(24):7034-41. PubMed ID: 12428956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sucrose/Glucose molecular alloys by cryomilling.
    Megarry AJ; Booth J; Burley J
    J Pharm Sci; 2014 Jul; 103(7):2098-2106. PubMed ID: 24867316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative hydrophobicity/hydrophilicity of fructose, glucose, sucrose, and trehalose as probed by 1-propanol: a differential approach in solution thermodynamics.
    Koga Y; Nishikawa K; Westh P
    J Phys Chem B; 2007 Dec; 111(50):13943-8. PubMed ID: 18031029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M; Walsh K; Lawson P
    Appl Spectrosc; 2003 Feb; 57(2):139-45. PubMed ID: 14610949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpy relaxation of freeze concentrated sucrose-water glass.
    Inoue C; Suzuki T
    Cryobiology; 2006 Feb; 52(1):83-9. PubMed ID: 16321366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragility of sugar melts.
    Liu J; Ren Z; Lin L; Li H; Jia R
    Food Sci Technol Int; 2012 Feb; 18(1):73-80. PubMed ID: 22328122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.