These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30724370)

  • 1. Effect of food properties and chewing condition on the electromyographic activity of the posterior tongue.
    Manda Y; Kodama N; Maeda N; Minagi S
    J Oral Rehabil; 2019 Jun; 46(6):511-517. PubMed ID: 30724370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of surface electromyography activity in the posterior tongue region during mastication of differently textured foods.
    Mori K; Manda Y; Kitagawa K; Nagatsuka H; Furutera H; Kodama N; Minagi S
    J Oral Rehabil; 2021 Apr; 48(4):403-410. PubMed ID: 33319400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in jaw muscle activity and the physical properties of foods with different textures during chewing behaviors.
    Iguchi H; Magara J; Nakamura Y; Tsujimura T; Ito K; Inoue M
    Physiol Behav; 2015 Dec; 152(Pt A):217-24. PubMed ID: 26440319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of texture of food on chewing patterns in the human subject.
    Horio T; Kawamura Y
    J Oral Rehabil; 1989 Mar; 16(2):177-83. PubMed ID: 2715866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New method of neck surface electromyography for the evaluation of tongue-lifting activity.
    Manda Y; Maeda N; Pan Q; Sugimoto K; Hashimoto Y; Tanaka Y; Kodama N; Minagi S
    J Oral Rehabil; 2016 Jun; 43(6):417-25. PubMed ID: 26860767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-examination of the surface EMG activity of the masseter muscle in young adults during chewing of two test foods.
    Karkazis HC; Kossioni AE
    J Oral Rehabil; 1997 Mar; 24(3):216-23. PubMed ID: 9131477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on non-human primate mastication of reversible inactivation by cooling of the face primary somatosensory cortex.
    Lin LD; Murray GM; Sessle BJ
    Arch Oral Biol; 1998 Feb; 43(2):133-41. PubMed ID: 9602292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of food hardness on chewing behavior in children.
    Almotairy N; Kumar A; Grigoriadis A
    Clin Oral Investig; 2021 Mar; 25(3):1203-1216. PubMed ID: 32613432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective assessment of actual chewing side by measurement of bilateral masseter muscle electromyography.
    Yamasaki Y; Kuwatsuru R; Tsukiyama Y; Matsumoto H; Oki K; Koyano K
    Arch Oral Biol; 2015 Dec; 60(12):1756-62. PubMed ID: 26433193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correspondence between food consistency and suprahyoid muscle activity, tongue pressure, and bolus transit times during the oropharyngeal phase of swallowing.
    Taniguchi H; Tsukada T; Ootaki S; Yamada Y; Inoue M
    J Appl Physiol (1985); 2008 Sep; 105(3):791-9. PubMed ID: 18556429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a crunchy pseudo-chewing sound on perceived texture of softened foods.
    Endo H; Ino S; Fujisaki W
    Physiol Behav; 2016 Dec; 167():324-331. PubMed ID: 27720736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface EMG activity of the masseter muscle in denture wearers during chewing of hard and soft food.
    Karkazis HC; Kossioni AE
    J Oral Rehabil; 1998 Jan; 25(1):8-14. PubMed ID: 9502121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Masseter muscle activity in denture wearers with superior and poor masticatory performance.
    Garrett NR; Kaurich M; Perez P; Kapur KK
    J Prosthet Dent; 1995 Dec; 74(6):628-36. PubMed ID: 8778388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles.
    Grigoriadis A; Johansson RS; Trulsson M
    J Oral Rehabil; 2014 May; 41(5):367-73. PubMed ID: 24612326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of body posture on chewing behaviours in healthy volunteers.
    Iizumi T; Magara J; Tsujimura T; Inoue M
    J Oral Rehabil; 2017 Nov; 44(11):835-842. PubMed ID: 28853169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individuality of masticatory performance and of masticatory muscle temporal parameters.
    Tewksbury CD; Callaghan KX; Fulks BA; Gerstner GE
    Arch Oral Biol; 2018 Jun; 90():113-124. PubMed ID: 29597061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electromyographic activities of jaw and hyoid musculature in different ingestive behaviours in the cat.
    Thexton AJ; McGarrick JD
    Arch Oral Biol; 1994 Jul; 39(7):599-612. PubMed ID: 7945019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of mastication and swallowing.
    Palmer JB; Rudin NJ; Lara G; Crompton AW
    Dysphagia; 1992; 7(4):187-200. PubMed ID: 1308667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of textured foods on masticatory muscle activity in older adults with oral hypofunction.
    Matsuo K; Kito N; Ogawa K; Izumi A; Masuda Y
    J Oral Rehabil; 2020 Feb; 47(2):180-186. PubMed ID: 31696953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG activity of the masseter muscle in implant supported overdenture wearers during chewing of hard and soft food.
    Karkazis HC
    J Oral Rehabil; 2002 Oct; 29(10):986-91. PubMed ID: 12421330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.