BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30724449)

  • 1. Dietary polysaccharides: fermentation potentials of a primitive gut ecosystem.
    Zeibich L; Schmidt O; Drake HL
    Environ Microbiol; 2019 Apr; 21(4):1436-1451. PubMed ID: 30724449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acids and Ribose: Drivers of Protein and RNA Fermentation by Ingested Bacteria of a Primitive Gut Ecosystem.
    Zeibich L; Staege M; Schmidt O; Drake HL
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31324631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein- and RNA-Enhanced Fermentation by Gut Microbiota of the Earthworm Lumbricus terrestris.
    Zeibich L; Schmidt O; Drake HL
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Engagement of Fermentative Taxa in Gut Contents of the Earthworm Lumbricus terrestris.
    Meier AB; Hunger S; Drake HL
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermenters in the earthworm gut: do transients matter?
    Zeibich L; Schmidt O; Drake HL
    FEMS Microbiol Ecol; 2019 Feb; 95(2):. PubMed ID: 30445604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content.
    Wüst PK; Horn MA; Drake HL
    ISME J; 2011 Jan; 5(1):92-106. PubMed ID: 20613788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel [NiFe]- and [FeFe]-hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents.
    Schmidt O; Wüst PK; Hellmuth S; Borst K; Horn MA; Drake HL
    Appl Environ Microbiol; 2011 Sep; 77(17):5842-50. PubMed ID: 21784904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.
    Schulz K; Hunger S; Brown GG; Tsai SM; Cerri CC; Conrad R; Drake HL
    ISME J; 2015 Aug; 9(8):1778-92. PubMed ID: 25615437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of water content and dietary organic carbon richness on gut bacteria in the earthworm
    Zeibich L; Guhl J; Drake HL
    FEMS Microbes; 2020 Sep; 1(1):xtaa002. PubMed ID: 37333959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae).
    Egert M; Marhan S; Wagner B; Scheu S; Friedrich MW
    FEMS Microbiol Ecol; 2004 May; 48(2):187-97. PubMed ID: 19712402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wheat cell walls and constituent polysaccharides induce similar microbiota profiles upon
    Lu S; Mikkelsen D; Yao H; Williams BA; Flanagan BM; Gidley MJ
    Food Funct; 2021 Feb; 12(3):1135-1146. PubMed ID: 33432311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin.
    Liu Y; Heath AL; Galland B; Rehrer N; Drummond L; Wu XY; Bell TJ; Lawley B; Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut bacterial metabolites of indigestible polysaccharides in intestinal fermentation as mediators of public health.
    Hijova E
    Bratisl Lek Listy; 2019; 120(11):807-812. PubMed ID: 31747759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes.
    Drake HL; Horn MA
    Annu Rev Microbiol; 2007; 61():169-89. PubMed ID: 17506687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic analyses highlight the symbiotic association between the glacier stonefly Andiperla willinki and its bacterial gut community.
    Murakami T; Segawa T; Takeuchi N; Barcaza Sepúlveda G; Labarca P; Kohshima S; Hongoh Y
    Environ Microbiol; 2018 Nov; 20(11):4170-4183. PubMed ID: 30246365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study.
    Adamberg K; Kolk K; Jaagura M; Vilu R; Adamberg S
    Benef Microbes; 2018 Jan; 9(1):21-34. PubMed ID: 29022389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving healthspan via changes in gut microbiota and fermentation.
    Keenan MJ; Marco ML; Ingram DK; Martin RJ
    Age (Dordr); 2015 Oct; 37(5):98. PubMed ID: 26371059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ hydrogen and nitrous oxide as indicators of concomitant fermentation and denitrification in the alimentary canal of the earthworm Lumbricus terrestris.
    Wüst PK; Horn MA; Drake HL
    Appl Environ Microbiol; 2009 Apr; 75(7):1852-9. PubMed ID: 19201982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota.
    La Rosa SL; Kachrimanidou V; Buffetto F; Pope PB; Pudlo NA; Martens EC; Rastall RA; Gibson GR; Westereng B
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30674645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model.
    Liu Z; Zhang Y; Ai C; Wen C; Dong X; Sun X; Cao C; Zhang X; Zhu B; Song S
    Food Res Int; 2021 Oct; 148():110562. PubMed ID: 34507721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.