BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30724464)

  • 21. Quantitative proteome profiling of CNS-infiltrating autoreactive CD4+ cells reveals selective changes during experimental autoimmune encephalomyelitis.
    Turvey ME; Koudelka T; Comerford I; Greer JM; Carroll W; Bernard CC; Hoffmann P; McColl SR
    J Proteome Res; 2014 Aug; 13(8):3655-70. PubMed ID: 24933266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis.
    Uchida Y; Sumiya T; Tachikawa M; Yamakawa T; Murata S; Yagi Y; Sato K; Stephan A; Ito K; Ohtsuki S; Couraud PO; Suzuki T; Terasaki T
    Mol Neurobiol; 2019 Mar; 56(3):2039-2056. PubMed ID: 29984400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis.
    Gharagozloo M; Mahvelati TM; Imbeault E; Gris P; Zerif E; Bobbala D; Ilangumaran S; Amrani A; Gris D
    J Neuroinflammation; 2015 Oct; 12():198. PubMed ID: 26521018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis.
    Butterfield RJ; Blankenhorn EP; Roper RJ; Zachary JF; Doerge RW; Teuscher C
    Am J Pathol; 2000 Aug; 157(2):637-45. PubMed ID: 10934166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Hu CL; Nydes M; Shanley KL; Morales Pantoja IE; Howard TA; Bizzozero OA
    J Neurochem; 2019 Feb; 148(3):426-439. PubMed ID: 30289974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inosine, an Endogenous Purine Nucleoside, Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis: a Role for A2A Adenosine Receptor.
    Junqueira SC; Dos Santos Coelho I; Lieberknecht V; Cunha MP; Calixto JB; Rodrigues ALS; Santos ARS; Dutra RC
    Mol Neurobiol; 2017 Jul; 54(5):3271-3285. PubMed ID: 27130268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Anti-Inflammatory Effects of Oral-Formulated Tacrolimus in Mice with Experimental Autoimmune Encephalomyelitis.
    Kim MJ; Sung JJ; Kim SH; Kim JM; Jeon GS; Mun SK; Ahn SW
    J Korean Med Sci; 2017 Sep; 32(9):1502-1507. PubMed ID: 28776347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.
    Guillot F; Garcia A; Salou M; Brouard S; Laplaud DA; Nicot AB
    J Neuroinflammation; 2015 Jul; 12():130. PubMed ID: 26141738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiparametric magnetic resonance imagingĀ for detection of pathological changes in the central nervous system of a mouse model of multiple sclerosis in vivo.
    Althobity AA; Khan N; Sandrock CJ; Woodruff TM; Cowin GJ; Brereton IM; Kurniawan ND
    NMR Biomed; 2023 Oct; 36(10):e4964. PubMed ID: 37122101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis.
    Dahl LC; Nasa Z; Chung J; Niego B; Tarlac V; Ho H; Galle A; Petratos S; Lee JY; Alderuccio F; Medcalf RL
    PLoS One; 2016; 11(7):e0158653. PubMed ID: 27427941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential neuro-immune patterns in two clinically relevant murine models of multiple sclerosis.
    DiSano KD; Linzey MR; Royce DB; Pachner AR; Gilli F
    J Neuroinflammation; 2019 May; 16(1):109. PubMed ID: 31118079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absence of system x
    Merckx E; Albertini G; Paterka M; Jensen C; Albrecht P; Dietrich M; Van Liefferinge J; Bentea E; Verbruggen L; Demuyser T; Deneyer L; Lewerenz J; van Loo G; De Keyser J; Sato H; Maher P; Methner A; Massie A
    J Neuroinflammation; 2017 Jan; 14(1):9. PubMed ID: 28086920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis.
    Shrestha B; Jiang X; Ge S; Paul D; Chianchiano P; Pachter JS
    Neurobiol Dis; 2017 Dec; 108():159-172. PubMed ID: 28844788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronologic localization of myelin-reactive cells in the lesions of relapsing EAE: implications for the study of multiple sclerosis.
    Cross AH; O'Mara T; Raine CS
    Neurology; 1993 May; 43(5):1028-33. PubMed ID: 7684116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation.
    Smorodchenko A; Schneider S; Rupprecht A; Hilse K; Sasgary S; Zeitz U; Erben RG; Pohl EE
    Biochim Biophys Acta Mol Basis Dis; 2017 Apr; 1863(4):1002-1012. PubMed ID: 28130201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cathepsin C modulates myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis.
    Durose WW; Shimizu T; Li J; Abe M; Sakimura K; Chetsawang B; Tanaka KF; Suzumura A; Tohyama K; Ikenaka K
    J Neurochem; 2019 Feb; 148(3):413-425. PubMed ID: 30152001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axonal damage in spinal cord is associated with gray matter atrophy in sensorimotor cortex in experimental autoimmune encephalomyelitis.
    Meyer CE; Gao JL; Cheng JY; Oberoi MR; Johnsonbaugh H; Lepore S; Kurth F; Thurston MJ; Itoh N; Patel KR; Voskuhl RR; MacKenzie-Graham A
    Mult Scler; 2020 Mar; 26(3):294-303. PubMed ID: 30843756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice.
    Chen H; Sun Y; Lai L; Wu H; Xiao Y; Ming B; Gao M; Zou H; Xiong P; Xu Y; Tan Z; Gong F; Zheng F
    Neuroscience; 2015 Nov; 308():157-68. PubMed ID: 26363151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis.
    Rossetti I; Zambusi L; Finardi A; Bodini A; Provini L; Furlan R; Morara S
    J Neuroimmunol; 2018 Oct; 323():94-104. PubMed ID: 30196840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation.
    Zarruk JG; Berard JL; Passos dos Santos R; Kroner A; Lee J; Arosio P; David S
    Neurobiol Dis; 2015 Sep; 81():93-107. PubMed ID: 25724358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.