BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30725464)

  • 1. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells.
    Zhang J; Zhang Q
    Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Assessment of Mitochondrial Function in Cytotrophoblast and Syncytialized Trophoblast Cells Using the Seahorse XFe24 Extracellular Flux Analyzer.
    Walker OS; May LL; Raha S
    Methods Mol Biol; 2024; 2728():137-147. PubMed ID: 38019398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Flux Assays to Determine Oxidative Phosphorylation and Glycolysis in Chronic Lymphocytic Leukemia Cells.
    Vangapandu HV; Gandhi V
    Methods Mol Biol; 2019; 1881():121-128. PubMed ID: 30350202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Seahorse XF Assays to Interrogate Real-Time Energy Metabolism in Cancer Cell Lines.
    Caines JK; Barnes DA; Berry MD
    Methods Mol Biol; 2022; 2508():225-234. PubMed ID: 35737244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Assessment of Mitochondrial Toxicity in HepG2 Cells Using the Seahorse Extracellular Flux Analyzer.
    Espinosa JA; Pohan G; Arkin MR; Markossian S
    Curr Protoc; 2021 Mar; 1(3):e75. PubMed ID: 33735523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic characterization of mouse podocytes.
    Abe Y; Sakairi T; Kajiyama H; Shrivastav S; Beeson C; Kopp JB
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C464-76. PubMed ID: 20445170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
    Wei C; Heitmeier M; Hruz PW; Shanmugam M
    Methods Mol Biol; 2018; 1713():69-75. PubMed ID: 29218518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples.
    Obeidat YM; Cheng MH; Catandi G; Carnevale E; Chicco AJ; Chen TW
    Biosens Bioelectron; 2019 May; 133():39-47. PubMed ID: 30909011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway.
    Abe Y; Sakairi T; Beeson C; Kopp JB
    Am J Physiol Renal Physiol; 2013 Nov; 305(10):F1477-90. PubMed ID: 24049142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells.
    Bourgeais J; Hérault O
    Methods Mol Biol; 2021; 2308():59-70. PubMed ID: 34057714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolytic reprogramming in macrophages and MSCs during inflammation.
    Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB
    Front Immunol; 2023; 14():1199751. PubMed ID: 37675119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the bioenergetic profile of human pluripotent stem cells.
    Pfiffer V; Prigione A
    Methods Mol Biol; 2015; 1264():279-88. PubMed ID: 25631022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Metabolic Changes in IFNγ-Treated Ovarian Cancer Cells.
    Kaur P; Nagar S; Bhagwat M; Uddin MM; Zhu Y; Vancura A
    Methods Mol Biol; 2020; 2108():197-207. PubMed ID: 31939182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the role Rab25 in energy metabolism and cancer using extracellular flux analysis and material balance.
    Mitra S; Molina J; Mills GB; Dennison JB
    Methods Mol Biol; 2015; 1298():195-205. PubMed ID: 25800844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early alterations in mitochondrial reserve capacity; a means to predict subsequent photoreceptor cell death.
    Perron NR; Beeson C; Rohrer B
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):101-9. PubMed ID: 23090843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer.
    Bhatia S; Thompson EW; Gunter JH
    Methods Mol Biol; 2021; 2179():327-340. PubMed ID: 32939731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.