These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30726080)

  • 1. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding.
    Dreiman GHS; Bictash M; Fish PV; Griffin L; Svensson F
    SLAS Discov; 2021 Feb; 26(2):257-262. PubMed ID: 32808550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data.
    Paricharak S; IJzerman AP; Bender A; Nigsch F
    ACS Chem Biol; 2016 May; 11(5):1255-64. PubMed ID: 26878899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity.
    Maciejewski M; Wassermann AM; Glick M; Lounkine E
    J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outlier mining in high throughput screening experiments.
    Engels MF; Wouters L; Verbeeck R; Vanhoof G
    J Biomol Screen; 2002 Aug; 7(4):341-51. PubMed ID: 12230888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction.
    Svensson F; Norinder U; Bender A
    J Chem Inf Model; 2017 Mar; 57(3):439-444. PubMed ID: 28195474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streamlining lead discovery by aligning in silico and high-throughput screening.
    Davies JW; Glick M; Jenkins JL
    Curr Opin Chem Biol; 2006 Aug; 10(4):343-51. PubMed ID: 16822701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-based virtual screening: application to the MDM4/p53 protein-protein interaction.
    Jacoby E; Boettcher A; Mayr LM; Brown N; Jenkins JL; Kallen J; Engeloch C; Schopfer U; Furet P; Masuya K; Lisztwan J
    Methods Mol Biol; 2009; 575():173-94. PubMed ID: 19727615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latent hit series hidden in high-throughput screening data.
    Varin T; Didiot MC; Parker CN; Schuffenhauer A
    J Med Chem; 2012 Feb; 55(3):1161-70. PubMed ID: 22185196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation.
    Kauler KR; Hevener KE
    Methods Mol Biol; 2025; 2834():181-193. PubMed ID: 39312166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the BioAssay Ontology for analyzing high-throughput screening data.
    Zander Balderud L; Murray D; Larsson N; Vempati U; Schürer SC; Bjäreland M; Engkvist O
    J Biomol Screen; 2015 Mar; 20(3):402-15. PubMed ID: 25512330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximizing gain in high-throughput screening using conformal prediction.
    Svensson F; Afzal AM; Norinder U; Bender A
    J Cheminform; 2018 Feb; 10(1):7. PubMed ID: 29468427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical approaches to efficient screening: information-rich screening protocol.
    Karnachi PS; Brown FK
    J Biomol Screen; 2004 Dec; 9(8):678-86. PubMed ID: 15634794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.