BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30726082)

  • 1. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.
    Luo X; Xiao Y; Wu Q; Zeng J
    Int J Biol Macromol; 2018 Aug; 115():786-791. PubMed ID: 29702166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.
    Zhang C; Ding R; Kessler MR
    Macromol Rapid Commun; 2014 Jun; 35(11):1068-74. PubMed ID: 24668919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
    de Haro JC; López-Pedrajas D; Pérez Á; Rodríguez JF; Carmona M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3174-3183. PubMed ID: 28822032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams.
    Prociak A; Kucała M; Kurańska M; Barczewski M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis.
    Petrović ZS; Zhang W; Javni I
    Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl₂O₂ Catalysis.
    Pantone V; Annese C; Fusco C; Fini P; Nacci A; Russo A; D'Accolti L
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28230803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties.
    Lee JH; Kim SH; Oh KW
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.
    Uprety BK; Reddy JV; Dalli SS; Rakshit SK
    Bioresour Technol; 2017 Jul; 235():309-315. PubMed ID: 28371769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S; Shokrgozar MA; Yari A; Saeedi-Eslami SN
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):153-64. PubMed ID: 25428057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the Properties of Bio-Polyols Based on White Mustard (
    Borowicz M; Isbrandt M; Paciorek-Sadowska J; Sander P
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols.
    Ivdre A; Abolins A; Volkovs N; Vevere L; Paze A; Makars R; Godina D; Rizikovs J
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols.
    Kirpluks M; Vanags E; Abolins A; Michalowski S; Fridrihsone A; Cabulis U
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties.
    Lu Y; Larock RC
    Biomacromolecules; 2008 Nov; 9(11):3332-40. PubMed ID: 18937404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of polyurethanes made from copolymers of epoxidized natural oil and tetrahydrofuran.
    Hoong SS; Yeong SK; Hassan HA; Din AK; Choo YM
    J Oleo Sci; 2015; 64(1):101-15. PubMed ID: 25492233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid Polyurethane Foams' Development and Optimization from Polyols Based on Depolymerized Suberin and Tall Oil Fatty Acids.
    Ivdre A; Kirpluks M; Abolins A; Vevere L; Sture B; Paze A; Godina D; Rizikovs J; Cabulis U
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.