BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30726163)

  • 1. Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
    Servant M; Tillman G; Schall JD; Logan GD; Palmeri TJ
    J Neurophysiol; 2019 Apr; 121(4):1300-1314. PubMed ID: 30726163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field.
    Reppert TR; Servant M; Heitz RP; Schall JD
    J Neurophysiol; 2018 Jul; 120(1):372-384. PubMed ID: 29668383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
    Purcell BA; Schall JD; Logan GD; Palmeri TJ
    J Neurosci; 2012 Mar; 32(10):3433-46. PubMed ID: 22399766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms of speed-accuracy tradeoff.
    Heitz RP; Schall JD
    Neuron; 2012 Nov; 76(3):616-28. PubMed ID: 23141072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural chronometry and coherency across speed-accuracy demands reveal lack of homomorphism between computational and neural mechanisms of evidence accumulation.
    Heitz RP; Schall JD
    Philos Trans R Soc Lond B Biol Sci; 2013 Oct; 368(1628):20130071. PubMed ID: 24018731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade.
    Schall JD; Purcell BA; Heitz RP; Logan GD; Palmeri TJ
    Eur J Neurosci; 2011 Jun; 33(11):1991-2002. PubMed ID: 21645095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurally constrained modeling of perceptual decision making.
    Purcell BA; Heitz RP; Cohen JY; Schall JD; Logan GD; Palmeri TJ
    Psychol Rev; 2010 Oct; 117(4):1113-43. PubMed ID: 20822291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.
    Cox GE; Palmeri TJ; Logan GD; Smith PL; Schall JD
    Psychol Rev; 2022 Oct; 129(5):1144-1182. PubMed ID: 35389715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
    Thompson KG; Bichot NP; Sato TR
    J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis.
    Hanes DP; Thompson KG; Schall JD
    Exp Brain Res; 1995; 103(1):85-96. PubMed ID: 7615040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural mechanism of speed-accuracy tradeoff in macaque area LIP.
    Hanks T; Kiani R; Shadlen MN
    Elife; 2014 May; 3():. PubMed ID: 24867216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate frontal eye fields. I. Single neurons discharging before saccades.
    Bruce CJ; Goldberg ME
    J Neurophysiol; 1985 Mar; 53(3):603-35. PubMed ID: 3981231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural control of visual search by frontal eye field: chronometry of neural events and race model processes.
    Nelson MJ; Murthy A; Schall JD
    J Neurophysiol; 2016 Apr; 115(4):1954-69. PubMed ID: 26864769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms for executive control of speed-accuracy trade-off.
    Reppert TR; Heitz RP; Schall JD
    Cell Rep; 2023 Nov; 42(11):113422. PubMed ID: 37950871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confidence in predicted position error explains saccadic decisions during pursuit.
    Coutinho JD; Lefèvre P; Blohm G
    J Neurophysiol; 2021 Mar; 125(3):748-767. PubMed ID: 33356899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurodynamic Evidence Supports a Forced-Excursion Model of Decision-Making under Speed/Accuracy Instructions.
    Spieser L; Kohl C; Forster B; Bestmann S; Yarrow K
    eNeuro; 2018; 5(3):. PubMed ID: 29951578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.