These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30726536)

  • 41. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration.
    Zhu BW; Lim TT
    Environ Sci Technol; 2007 Nov; 41(21):7523-9. PubMed ID: 18044536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidation of degradation mechanism of dioxins during mechanochemical treatment.
    Nomura Y; Nakai S; Hosomi M
    Environ Sci Technol; 2005 May; 39(10):3799-804. PubMed ID: 15952388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphotungstic Acid as a Dechlorination Agent Collaborates with CeO
    Yang H; Chen A; Wang F; Lan T; Zhang J; Hu X; Shen Y; Cheng D; Zhang D
    Environ Sci Technol; 2024 Apr; 58(17):7672-7682. PubMed ID: 38639327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect.
    Cheng R; Zhou W; Wang JL; Qi D; Guo L; Zhang WX; Qian Y
    J Hazard Mater; 2010 Aug; 180(1-3):79-85. PubMed ID: 20434840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.
    Lee CC; Doong RA
    Environ Sci Technol; 2011 Mar; 45(6):2301-7. PubMed ID: 21341692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems.
    Lu GN; Dang Z; Fennell DE; Huang W; Li Z; Liu CQ
    J Hazard Mater; 2010 May; 177(1-3):1145-9. PubMed ID: 20064690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dechlorination of individual congeners in aroclor 1248 as enhanced by chlorobenzoates, chlorophenols, and chlorobenzenes.
    Kim J; Cho YC; Frohnhoefer RC; Rhee GY
    J Microbiol Biotechnol; 2008 Oct; 18(10):1701-8. PubMed ID: 18955823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts.
    Xu X; Zhou H; He P; Wang D
    Chemosphere; 2005 Feb; 58(8):1135-40. PubMed ID: 15664621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity in the species and fate of chlorine during TCE reduction by two nZVI with non-identical anaerobic corrosion mechanism.
    Yang X; Zhang C; Liu F; Tang J; Huang F; Zhang L
    Chemosphere; 2019 Sep; 230():230-238. PubMed ID: 31103869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment.
    Song GJ; Kim SH; Seo YC; Kim SC
    Chemosphere; 2008 Mar; 71(2):248-57. PubMed ID: 17996274
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of dioxins (PCDDs/PCDFs) by dioxin-free fly ash as a catalyst and relation with several chlorine-sources.
    Takasuga T; Makino T; Tsubota K; Takeda N
    Chemosphere; 2000; 40(9-11):1003-7. PubMed ID: 10739038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of zinc in MSW fly ash during formation of chlorinated aromatics.
    Fujimori T; Tanino Y; Takaoka M
    Environ Sci Technol; 2011 Sep; 45(18):7678-84. PubMed ID: 21838315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of PCBs formation from the pyrolysis of chlorobenzenes.
    Liu PY; Zheng MH; Zhang B; Xu XB
    Chemosphere; 2001; 43(4-7):783-5. PubMed ID: 11372866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts.
    Huang Q; Liu W; Peng P; Huang W
    J Hazard Mater; 2013 Nov; 262():634-41. PubMed ID: 24121629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficacy of zero-valent copper (Cu(0)) nanoparticles and reducing agents for dechlorination of mono chloroaromatics.
    Raut SS; Kamble SP; Kulkarni PS
    Chemosphere; 2016 Sep; 159():359-366. PubMed ID: 27318451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron.
    Kim JH; Tratnyek PG; Chang YS
    Environ Sci Technol; 2008 Jun; 42(11):4106-12. PubMed ID: 18589973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconstructed genomes of novel Dehalococcoides mccartyi strains from 1,2,3,4-tetrachlorodibenzo-p-dioxin-dechlorinating enrichment cultures reveal divergent reductive dehalogenase gene profiles.
    Dam HT; Vollmers J; Kaster AK; Häggblom MM
    FEMS Microbiol Ecol; 2017 Dec; 93(12):. PubMed ID: 29112726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery.
    Xiu FR; Bai Q; Qi Y; Lei X; Yang R; Wang S; Wang Y; Wang J; Zhan L; Zhou H; Shao W
    Sci Total Environ; 2023 Dec; 904():166574. PubMed ID: 37647949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles.
    Ko SO; Lee DH; Kim YH
    Environ Technol; 2007 May; 28(5):583-93. PubMed ID: 17615967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Dechlorination of HCB by bimetals based on zero valent iron].
    Zeng XW; Liu JG; Nie XQ
    Huan Jing Ke Xue; 2013 Jan; 34(1):182-7. PubMed ID: 23487936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.