These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 30726670)
1. Lipopolysaccharides Inhibit REG3A Self-Aggregation on Gold Nanoparticles: A Combined Study of Multivariate Analysis on Time-Resolved Localized Surface Plasmon Resonance Spectra and Molecular Modeling. Han Z; Ren X; Huang Q; Shi T; Lai Y; Zhao YL Langmuir; 2019 Mar; 35(9):3498-3506. PubMed ID: 30726670 [TBL] [Abstract][Full Text] [Related]
2. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies. Blakey I; Schiller TL; Merican Z; Fredericks PM Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687 [TBL] [Abstract][Full Text] [Related]
3. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles. Wang Y; Ni Y Talanta; 2014 Feb; 119():320-30. PubMed ID: 24401421 [TBL] [Abstract][Full Text] [Related]
4. Probing the effects of cysteine residues on protein adsorption onto gold nanoparticles using wild-type and mutated GB3 proteins. Siriwardana K; Wang A; Vangala K; Fitzkee N; Zhang D Langmuir; 2013 Sep; 29(35):10990-6. PubMed ID: 23927741 [TBL] [Abstract][Full Text] [Related]
5. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption. Gadogbe M; Ansar SM; He G; Collier WE; Rodriguez J; Liu D; Chu IW; Zhang D Anal Bioanal Chem; 2013 Jan; 405(1):413-22. PubMed ID: 23092965 [TBL] [Abstract][Full Text] [Related]
6. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Wang G; Yan C; Gao S; Liu Y Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109856. PubMed ID: 31349396 [TBL] [Abstract][Full Text] [Related]
7. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Li Y; Shi Z; Radauer-Preiml I; Andosch A; Casals E; Luetz-Meindl U; Cobaleda M; Lin Z; Jaberi-Douraki M; Italiani P; Horejs-Hoeck J; Himly M; Monteiro-Riviere NA; Duschl A; Puntes VF; Boraschi D Nanotoxicology; 2017; 11(9-10):1157-1175. PubMed ID: 29192556 [TBL] [Abstract][Full Text] [Related]
8. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776 [TBL] [Abstract][Full Text] [Related]
9. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Nasrin F; Chowdhury AD; Takemura K; Lee J; Adegoke O; Deo VK; Abe F; Suzuki T; Park EY Biosens Bioelectron; 2018 Dec; 122():16-24. PubMed ID: 30236804 [TBL] [Abstract][Full Text] [Related]
10. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Zhang X; Servos MR; Liu J Langmuir; 2012 Feb; 28(8):3896-902. PubMed ID: 22272583 [TBL] [Abstract][Full Text] [Related]
11. Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. Javed I; He J; Kakinen A; Faridi A; Yang W; Davis TP; Ke PC; Chen P ACS Appl Mater Interfaces; 2019 Mar; 11(11):10462-10471. PubMed ID: 30663303 [TBL] [Abstract][Full Text] [Related]
12. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
13. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization. Kitayama Y; Takeuchi T Anal Chem; 2014 Jun; 86(11):5587-94. PubMed ID: 24830565 [TBL] [Abstract][Full Text] [Related]
14. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. Li X; Tamada K; Baba A; Knoll W; Hara M J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722 [TBL] [Abstract][Full Text] [Related]
15. [Optical Analysis of the Interaction of Mercaptan Derivatives of Nanogold Particles with Carcinoembryonic Antigen]. Zeng HJ; Zhao RL; Wang DS; Li CX; Liu YY Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):478-81. PubMed ID: 27209753 [TBL] [Abstract][Full Text] [Related]
16. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Stobiecka M; Hepel M Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772 [TBL] [Abstract][Full Text] [Related]
17. A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg(2+)-DNA complex induced aggregation of gold nanoparticles. Liu ZD; Li YF; Ling J; Huang CZ Environ Sci Technol; 2009 Jul; 43(13):5022-7. PubMed ID: 19673301 [TBL] [Abstract][Full Text] [Related]
18. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition. Liu F; Guo Y; Hu Y; Zhang X; Zheng X Anal Bioanal Chem; 2019 Sep; 411(22):5845-5854. PubMed ID: 31278549 [TBL] [Abstract][Full Text] [Related]
19. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold. Zhang Z; Li H; Zhang F; Wu Y; Guo Z; Zhou L; Li J Langmuir; 2014 Mar; 30(10):2648-59. PubMed ID: 24552456 [TBL] [Abstract][Full Text] [Related]
20. Orthogonal analysis of functional gold nanoparticles for biomedical applications. Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]