BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30726764)

  • 21. Prediction of acute toxicity for Chlorella vulgaris caused by tire wear particle-derived compounds using quantitative structure-activity relationship models.
    Jiang JR; Cai WX; Chen ZF; Liao XL; Cai Z
    Water Res; 2024 Jun; 256():121643. PubMed ID: 38663211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. E-state modeling of fish toxicity independent of 3D structure information.
    Rose K; Hall LH
    SAR QSAR Environ Res; 2003 Apr; 14(2):113-29. PubMed ID: 12747570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular connectivity indices for predicting bioactivities of substituted nitrobenzene and aniline compounds.
    Lin KH; Jaw CG; Yen JH; Wang YS
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1942-9. PubMed ID: 19423164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.
    Cai B; Xie L; Yang D; Arcangeli JP
    J Hazard Mater; 2010 May; 177(1-3):414-9. PubMed ID: 20060222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A QSTR model for toxicity prediction of pesticides towards Daphnia magna.
    Jia Q; Wang J; Yan F; Wang Q
    Chemosphere; 2022 Mar; 291(Pt 2):132980. PubMed ID: 34813852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris.
    Zhu M; Ge F; Zhu R; Wang X; Zheng X
    Chemosphere; 2010 Jun; 80(1):46-52. PubMed ID: 20417544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative performance of descriptors in a multiple linear and Kriging models: a case study on the acute toxicity of organic chemicals to algae.
    Tugcu G; Yilmaz HB; Saçan MT
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11924-32. PubMed ID: 24946708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined toxicity of the mixtures of phenol and aniline derivatives to Vibrio qinghaiensis sp.-Q67.
    Mo LY; Liu SS; Zhu YN; Liu HL; Liu HY; Yi ZS
    Bull Environ Contam Toxicol; 2011 Oct; 87(4):473-9. PubMed ID: 21800087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols.
    Damborsky J; Schultz TW
    Chemosphere; 1997 Feb; 34(2):429-46. PubMed ID: 9057301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.
    Geiger E; Hornek-Gausterer R; Saçan MT
    Ecotoxicol Environ Saf; 2016 Jul; 129():189-98. PubMed ID: 27045919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-term assay.
    Netzeva TI; Dearden JC; Edwards R; Worgan AD; Cronin MT
    J Chem Inf Comput Sci; 2004; 44(1):258-65. PubMed ID: 14741035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of bacterial growth kinetics to in vitro toxicity assessment of substituted phenols and anilines.
    Nendza M; Seydel JK
    Ecotoxicol Environ Saf; 1990 Apr; 19(2):228-41. PubMed ID: 2186904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative QSAR: radical toxicity and scavenging. Two different sides of the same coin.
    Hansch C; Zhang L
    SAR QSAR Environ Res; 1995; 4(2-3):73-82. PubMed ID: 8765903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches.
    Hossain KA; Roy K
    Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of Chlorella vulgaris exposed to boron: Mechanisms of toxicity assessed by multiple endpoints.
    Chen X; Su L; Yin X; Pei Y
    Environ Toxicol Pharmacol; 2019 Aug; 70():103208. PubMed ID: 31207443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.