BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30726915)

  • 1. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression.
    Nakatsukasa H; Oda M; Yin J; Chikuma S; Ito M; Koga-Iizuka M; Someya K; Kitagawa Y; Ohkura N; Sakaguchi S; Koya I; Sanosaka T; Kohyama J; Tsukada YI; Yamanaka S; Takamura-Enya T; Lu Q; Yoshimura A
    Int Immunol; 2019 Apr; 31(5):335-347. PubMed ID: 30726915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Foxp3 stability through modulation of TET activity.
    Yue X; Trifari S; Äijö T; Tsagaratou A; Pastor WA; Zepeda-Martínez JA; Lio CW; Li X; Huang Y; Vijayanand P; Lähdesmäki H; Rao A
    J Exp Med; 2016 Mar; 213(3):377-97. PubMed ID: 26903244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis.
    Yang R; Qu C; Zhou Y; Konkel JE; Shi S; Liu Y; Chen C; Liu S; Liu D; Chen Y; Zandi E; Chen W; Zhou Y; Shi S
    Immunity; 2015 Aug; 43(2):251-63. PubMed ID: 26275994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of TET2 and TET3 in regulatory T cells unleashes effector function.
    Yue X; Lio CJ; Samaniego-Castruita D; Li X; Rao A
    Nat Commun; 2019 May; 10(1):2011. PubMed ID: 31043609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Foxp3 stability through CNS2 demethylation by TET enzyme induction and activation.
    Someya K; Nakatsukasa H; Ito M; Kondo T; Tateda KI; Akanuma T; Koya I; Sanosaka T; Kohyama J; Tsukada YI; Takamura-Enya T; Yoshimura A
    Int Immunol; 2017 Aug; 29(8):365-375. PubMed ID: 29048538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases.
    Nair VS; Song MH; Ko M; Oh KI
    Mol Cells; 2016 Dec; 39(12):888-897. PubMed ID: 27989104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of Tet2 is associated with Foxp3 TSDR hypermethylation in regulatory T cell of allergic rhinitis.
    Tan L; Qiu T; Xiang R; Cao C; Deng Y; Tao Z; Xu Y
    Life Sci; 2020 Jan; 241():117101. PubMed ID: 31778687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells.
    Nair VS; Oh KI
    Biochem Biophys Res Commun; 2014 Jul; 450(1):918-24. PubMed ID: 24984151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner.
    Sasidharan Nair V; Song MH; Oh KI
    J Immunol; 2016 Mar; 196(5):2119-31. PubMed ID: 26826239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2.
    Wakamatsu E; Omori H; Kawano A; Ogawa S; Abe R
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2597-2602. PubMed ID: 30007439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity.
    Tanaka S; Ise W; Inoue T; Ito A; Ono C; Shima Y; Sakakibara S; Nakayama M; Fujii K; Miura I; Sharif J; Koseki H; Koni PA; Raman I; Li QZ; Kubo M; Fujiki K; Nakato R; Shirahige K; Araki H; Miura F; Ito T; Kawakami E; Baba Y; Kurosaki T
    Nat Immunol; 2020 Aug; 21(8):950-961. PubMed ID: 32572241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells.
    Schoeler K; Aufschnaiter A; Messner S; Derudder E; Herzog S; Villunger A; Rajewsky K; Labi V
    FEBS J; 2019 Sep; 286(18):3566-3581. PubMed ID: 31120187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disabled C3ar1/C5ar1 Signaling in Foxp3+ T Regulatory Cells Leads to TSDR Demethylation and Long-Term Stability.
    Medof ME; Rieder SA; Shevach EM
    J Immunol; 2023 Nov; 211(9):1359-1366. PubMed ID: 37756526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TET proteins regulate T cell and iNKT cell lineage specification in a TET2 catalytic dependent manner.
    Äijö T; Theofilatos D; Cheng M; Smith MD; Xiong Y; Baldwin AS; Tsagaratou A
    Front Immunol; 2022; 13():940995. PubMed ID: 35990681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 promotes the expansion of regulatory T cells via DNMT3a- and TET2- mediated Foxp3 expression in sepsis.
    Zhang H; Wu T; Ren C; Dong N; Wu Y; Yao Y
    Burns Trauma; 2023; 11():tkad021. PubMed ID: 37564681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TET2-mediated upregulation of 5-hydroxymethylcytosine in LRRC39 promoter promotes Th1 response in association with downregulated Treg response in Vogt-Koyanagi-Harada disease.
    Zhang W; Chen Z; Yi K; Su G; Liu Y; Deng Y; Zhang Y; Cao Q; Pu Y; Luo X; Lai Y; Yang P
    Clin Immunol; 2023 May; 250():109323. PubMed ID: 37019422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function.
    Wang L; Liu Y; Han R; Beier UH; Thomas RM; Wells AD; Hancock WW
    Mol Cell Biol; 2013 Oct; 33(20):4106-15. PubMed ID: 23979593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4(+)Foxp3(+) T and IL-17(+)CD4(+) Th17 cells.
    Kim JH; Patil AM; Choi JY; Kim SB; Uyangaa E; Hossain FM; Park SY; Lee JH; Eo SK
    J Neuroinflammation; 2016 Jul; 13(1):223. PubMed ID: 27439902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.
    Tsagaratou A; González-Avalos E; Rautio S; Scott-Browne JP; Togher S; Pastor WA; Rothenberg EV; Chavez L; Lähdesmäki H; Rao A
    Nat Immunol; 2017 Jan; 18(1):45-53. PubMed ID: 27869820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of TET3 regulated cell proliferation in HepG2 cells.
    Zhong X; Liu D; Hao Y; Li C; Hao J; Lin C; Shi S; Wang D
    Gene; 2019 May; 698():113-119. PubMed ID: 30836118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.