BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30727799)

  • 1. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts.
    Wigger H; Nowack B
    Nanotoxicology; 2019 Jun; 13(5):623-643. PubMed ID: 30727799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO
    Hong H; Adam V; Nowack B
    Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques.
    Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A
    Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental risk assessment of engineered nano-SiO
    Wang Y; Nowack B
    Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.
    Gottschalk F; Kost E; Nowack B
    Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).
    Arts JH; Hadi M; Irfan MA; Keene AM; Kreiling R; Lyon D; Maier M; Michel K; Petry T; Sauer UG; Warheit D; Wiench K; Wohlleben W; Landsiedel R
    Regul Toxicol Pharmacol; 2015 Mar; 71(2 Suppl):S1-27. PubMed ID: 25818068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential.
    Bhattacharya K; Kiliç G; Costa PM; Fadeel B
    Nanotoxicology; 2017 Aug; 11(6):809-826. PubMed ID: 28816564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems.
    Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V
    Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic probabilistic material flow analysis of nano-SiO
    Wang Y; Nowack B
    Environ Pollut; 2018 Apr; 235():589-601. PubMed ID: 29331892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies.
    Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM
    Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms.
    Zheng Y; Nowack B
    Environ Toxicol Chem; 2022 May; 41(5):1202-1214. PubMed ID: 35188281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis.
    Adam V; Caballero-Guzman A; Nowack B
    Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The minimum inhibitory concentration (MIC) assay with Escherichia coli: An early tier in the environmental hazard assessment of nanomaterials?
    Vassallo J; Besinis A; Boden R; Handy RD
    Ecotoxicol Environ Saf; 2018 Oct; 162():633-646. PubMed ID: 30033160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.