These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30727850)

  • 1. A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity.
    Yoshioka H
    J Biol Dyn; 2019 Dec; 13(1):148-176. PubMed ID: 30727850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic control of single-species population dynamics model subject to jump ambiguity.
    Yoshioka H; Tsujimura M
    J Biol Dyn; 2020 Dec; 14(1):696-729. PubMed ID: 32845218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singular stochastic control model for algae growth management in dam downstream.
    Yoshioka H; Yaegashi Y
    J Biol Dyn; 2018 Dec; 12(1):242-270. PubMed ID: 29461937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic differential game for management of non-renewable fishery resource under model ambiguity.
    Yoshioka H; Yaegashi Y
    J Biol Dyn; 2018 Dec; 12(1):817-845. PubMed ID: 30325271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of nonlinear optimal control for chaotic synchronization of coupled stochastic neural networks via Hamilton-Jacobi-Bellman equation.
    Liu Z
    Neural Netw; 2018 Mar; 99():166-177. PubMed ID: 29427843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-species competing population dynamics with the population-dependent environmental capacities under random disturbance.
    Yoshioka H
    Theory Biosci; 2020 Sep; 139(3):279-297. PubMed ID: 32780209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback control problem of an SIR epidemic model based on the Hamilton-Jacobi-Bellman equation.
    Hwang YG; Kwon HD; Lee J
    Math Biosci Eng; 2020 Jan; 17(3):2284-2301. PubMed ID: 32233535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic optimal switching model for migrating population dynamics.
    Yoshioka H; Tanaka T; Aranishi F; Izumi T; Fujihara M
    J Biol Dyn; 2019 Dec; 13(1):706-732. PubMed ID: 31701818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Network-Based Solutions for Stochastic Optimal Control Using Path Integrals.
    Rajagopal K; Balakrishnan SN; Busemeyer JR
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):534-545. PubMed ID: 28212072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting of interacting stochastic populations.
    Hening A; Tran KQ; Phan TT; Yin G
    J Math Biol; 2019 Jul; 79(2):533-570. PubMed ID: 31030297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination.
    Ma H; Zhang Q
    Math Biosci Eng; 2021 Oct; 18(6):9474-9495. PubMed ID: 34814354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invasion probabilities, hitting times, and some fluctuation theory for the stochastic logistic process.
    Parsons TL
    J Math Biol; 2018 Oct; 77(4):1193-1231. PubMed ID: 29947947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Least squares solutions of the HJB equation with neural network value-function approximators.
    Tassa Y; Erez T
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1031-41. PubMed ID: 17668659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
    Luo B; Wu HN; Huang T; Liu D
    Neural Netw; 2015 Nov; 71():150-8. PubMed ID: 26356598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal harvesting of a competitive n-species stochastic model with delayed diffusions.
    Zhu FF; Meng XZ; Zhang TH
    Math Biosci Eng; 2019 Feb; 16(3):1554-1574. PubMed ID: 30947432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stochastic differential game approach toward animal migration.
    Yoshioka H
    Theory Biosci; 2019 Nov; 138(2):277-303. PubMed ID: 30972714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic theory of age-structured stochastic birth-death processes.
    Greenman CD; Chou T
    Phys Rev E; 2016 Jan; 93(1):012112. PubMed ID: 26871029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward-Backward Sweep Method for the System of HJB-FP Equations in Memory-Limited Partially Observable Stochastic Control.
    Tottori T; Kobayashi TJ
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized hamilton-jacobi-bellman formulation -based neural network control of affine nonlinear discrete-time systems.
    Chen Z; Jagannathan S
    IEEE Trans Neural Netw; 2008 Jan; 19(1):90-106. PubMed ID: 18269941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.