These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30727879)

  • 21. The development of high-throughput screening approaches for stem cell engineering.
    Mei Y; Goldberg M; Anderson D
    Curr Opin Chem Biol; 2007 Aug; 11(4):388-93. PubMed ID: 17702642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Omics technologies for high-throughput-screening of cell-biomaterial interactions.
    Sari B; Isik M; Eylem CC; Bektas C; Okesola BO; Karakaya E; Emregul E; Nemutlu E; Derkus B
    Mol Omics; 2022 Aug; 18(7):591-615. PubMed ID: 35723504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal.
    Power KA; Fitzgerald KT; Gallagher WM
    Biomaterials; 2010 Sep; 31(26):6667-74. PubMed ID: 20557931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening.
    Lind JU; Yadid M; Perkins I; O'Connor BB; Eweje F; Chantre CO; Hemphill MA; Yuan H; Campbell PH; Vlassak JJ; Parker KK
    Lab Chip; 2017 Oct; 17(21):3692-3703. PubMed ID: 28976521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergence of Highly Resolved and Rapid Screening Platforms with Dynamically Engineered, Cell Phenotype-Prescriptive Biomaterials.
    Bennett NK; Dhaliwal A; Moghe PV
    Curr Pharmacol Rep; 2016 Jun; 2(3):142-151. PubMed ID: 27482508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered materials to model human intestinal development and cancer using organoids.
    Cruz-Acuña R; García AJ
    Exp Cell Res; 2019 Apr; 377(1-2):109-114. PubMed ID: 30794801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
    Magin CM; Alge DL; Anseth KS
    Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Paper-Based Cell Culture Platforms.
    Lantigua D; Kelly YN; Unal B; Camci-Unal G
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29076283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of biomaterials and three dimensional (3D) in vitro tissue models in fighting against COVID-19.
    Seyfoori A; Amereh M; Dabiri SMH; Askari E; Walsh T; Akbari M
    Biomater Sci; 2021 Feb; 9(4):1217-1226. PubMed ID: 33355542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials.
    Taraballi F; Sushnitha M; Tsao C; Bauza G; Liverani C; Shi A; Tasciotti E
    Adv Healthc Mater; 2018 Sep; 7(17):e1800490. PubMed ID: 29995315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High throughput optimization of stem cell microenvironments.
    Yang F; Mei Y; Langer R; Anderson DG
    Comb Chem High Throughput Screen; 2009 Jul; 12(6):554-61. PubMed ID: 19601753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput screening of cell responses to biomaterials.
    Yliperttula M; Chung BG; Navaladi A; Manbachi A; Urtti A
    Eur J Pharm Sci; 2008 Oct; 35(3):151-60. PubMed ID: 18586092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging platforms for high-throughput enzymatic bioassays.
    Shao F; Lee PW; Li H; Hsieh K; Wang TH
    Trends Biotechnol; 2023 Jan; 41(1):120-133. PubMed ID: 35863950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-Generation Compound Delivery Platforms to Support Miniaturized Biology.
    Bhatt S; Crimmin S; Gross J; Nixon E; Truong M; Weglos M; Kallal L
    SLAS Technol; 2019 Jun; 24(3):245-255. PubMed ID: 30726680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput and combinatorial technologies for tissue engineering applications.
    Peters A; Brey DM; Burdick JA
    Tissue Eng Part B Rev; 2009 Sep; 15(3):225-39. PubMed ID: 19290801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid assessment of migration and proliferation: a novel 3D high-throughput platform for rational and combinatorial screening of tissue-specific biomaterials.
    Dumont CM; Karande P; Thompson DM
    Tissue Eng Part C Methods; 2014 Aug; 20(8):620-9. PubMed ID: 24256302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
    Perestrelo AR; Águas AC; Rainer A; Forte G
    Sensors (Basel); 2015 Dec; 15(12):31142-70. PubMed ID: 26690442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.