These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30728233)

  • 1. Non-Euclidean navigation.
    Warren WH
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wormholes in virtual space: From cognitive maps to cognitive graphs.
    Warren WH; Rothman DB; Schnapp BH; Ericson JD
    Cognition; 2017 Sep; 166():152-163. PubMed ID: 28577445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the invariant structure of spatial knowledge: Support for the cognitive graph hypothesis.
    Ericson JD; Warren WH
    Cognition; 2020 Jul; 200():104276. PubMed ID: 32450417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments.
    Baumann T; Mallot HA
    PLoS Comput Biol; 2023 Dec; 19(12):e1011748. PubMed ID: 38150480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human navigation in curved spaces.
    Widdowson C; Wang RF
    Cognition; 2022 Jan; 218():104923. PubMed ID: 34638034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study.
    Javadi AH; Patai EZ; Marin-Garcia E; Margolis A; Tan HM; Kumaran D; Nardini M; Penny W; Duzel E; Dayan P; Spiers HJ
    J Cogn Neurosci; 2019 Aug; 31(8):1227-1247. PubMed ID: 30990386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial inference without a cognitive map: the role of higher-order path integration.
    Bouchekioua Y; Blaisdell AP; Kosaki Y; Tsutsui-Kimura I; Craddock P; Mimura M; Watanabe S
    Biol Rev Camb Philos Soc; 2021 Feb; 96(1):52-65. PubMed ID: 32939978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building a cognitive map by assembling multiple path integration systems.
    Wang RF
    Psychon Bull Rev; 2016 Jun; 23(3):692-702. PubMed ID: 26442503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Children five-to-nine years old can use path integration to build a cognitive map without vision.
    Bostelmann M; Lavenex P; Banta Lavenex P
    Cogn Psychol; 2020 Sep; 121():101307. PubMed ID: 32445986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts.
    Foo P; Warren WH; Duchon A; Tarr MJ
    J Exp Psychol Learn Mem Cogn; 2005 Mar; 31(2):195-215. PubMed ID: 15755239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humans account for cognitive costs when finding shortcuts: An information-theoretic analysis of navigation.
    Lancia GL; Eluchans M; D'Alessandro M; Spiers HJ; Pezzulo G
    PLoS Comput Biol; 2023 Jan; 19(1):e1010829. PubMed ID: 36608145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive maps in the wild: revealing the use of metric information in black howler monkey route navigation.
    de Guinea M; Estrada A; Nekaris KA; Van Belle S
    J Exp Biol; 2021 Aug; 224(15):. PubMed ID: 34384101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structuring Knowledge with Cognitive Maps and Cognitive Graphs.
    Peer M; Brunec IK; Newcombe NS; Epstein RA
    Trends Cogn Sci; 2021 Jan; 25(1):37-54. PubMed ID: 33248898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration patterns shape cognitive map learning.
    Brunec IK; Nantais MM; Sutton JE; Epstein RA; Newcombe NS
    Cognition; 2023 Apr; 233():105360. PubMed ID: 36549130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From cognitive maps to cognitive graphs.
    Chrastil ER; Warren WH
    PLoS One; 2014; 9(11):e112544. PubMed ID: 25389769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel vector memories in the brain of a bee as foundation for flexible navigation.
    Patel RN; Roberts NS; Kempenaers J; Zadel A; Heinze S
    Proc Natl Acad Sci U S A; 2024 Jul; 121(30):e2402509121. PubMed ID: 39008670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender differences in spatial navigation: Characterizing wayfinding behaviors.
    Munion AK; Stefanucci JK; Rovira E; Squire P; Hendricks M
    Psychon Bull Rev; 2019 Dec; 26(6):1933-1940. PubMed ID: 31432331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-based navigation using grid-like representations in artificial agents.
    Banino A; Barry C; Uria B; Blundell C; Lillicrap T; Mirowski P; Pritzel A; Chadwick MJ; Degris T; Modayil J; Wayne G; Soyer H; Viola F; Zhang B; Goroshin R; Rabinowitz N; Pascanu R; Beattie C; Petersen S; Sadik A; Gaffney S; King H; Kavukcuoglu K; Hassabis D; Hadsell R; Kumaran D
    Nature; 2018 May; 557(7705):429-433. PubMed ID: 29743670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No need for a cognitive map: decentralized memory for insect navigation.
    Cruse H; Wehner R
    PLoS Comput Biol; 2011 Mar; 7(3):e1002009. PubMed ID: 21445233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigation and acquisition of spatial knowledge in a virtual maze.
    Gillner S; Mallot HA
    J Cogn Neurosci; 1998 Jul; 10(4):445-63. PubMed ID: 9712675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.