These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 30728291)
1. Abnormal glycogen storage in tuberous sclerosis complex caused by impairment of mTORC1-dependent and -independent signaling pathways. Pal R; Xiong Y; Sardiello M Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2977-2986. PubMed ID: 30728291 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex. Wang Y; Tang S; Wu Y; Wan X; Zhou M; Li H; Zha X IUBMB Life; 2020 May; 72(5):965-977. PubMed ID: 31958214 [TBL] [Abstract][Full Text] [Related]
4. TSC2 regulates microRNA biogenesis via mTORC1 and GSK3β. Ogórek B; Lam HC; Khabibullin D; Liu HJ; Nijmeh J; Triboulet R; Kwiatkowski DJ; Gregory RI; Henske EP Hum Mol Genet; 2018 May; 27(9):1654-1663. PubMed ID: 29509898 [TBL] [Abstract][Full Text] [Related]
5. mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development. Peng H; Liu J; Sun Q; Chen R; Wang Y; Duan J; Li C; Li B; Jing Y; Chen X; Mao Q; Xu KF; Walker CL; Li J; Wang J; Zhang H Oncogene; 2013 Sep; 32(39):4702-11. PubMed ID: 23108404 [TBL] [Abstract][Full Text] [Related]
6. Finding a cure for tuberous sclerosis complex: From genetics through to targeted drug therapies. McEneaney LJ; Tee AR Adv Genet; 2019; 103():91-118. PubMed ID: 30904097 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis. Pal R; Bondar VV; Adamski CJ; Rodney GG; Sardiello M Sci Rep; 2017 Jun; 7(1):4174. PubMed ID: 28646232 [TBL] [Abstract][Full Text] [Related]
8. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Parkhitko A; Myachina F; Morrison TA; Hindi KM; Auricchio N; Karbowniczek M; Wu JJ; Finkel T; Kwiatkowski DJ; Yu JJ; Henske EP Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12455-60. PubMed ID: 21746920 [TBL] [Abstract][Full Text] [Related]
9. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Lam HC; Siroky BJ; Henske EP Nat Rev Nephrol; 2018 Nov; 14(11):704-716. PubMed ID: 30232410 [TBL] [Abstract][Full Text] [Related]
10. A new homozygous HERC1 gain-of-function variant in MDFPMR syndrome leads to mTORC1 hyperactivation and reduced autophagy during cell catabolism. Schwarz JM; Pedrazza L; Stenzel W; Rosa JL; Schuelke M; Straussberg R Mol Genet Metab; 2020; 131(1-2):126-134. PubMed ID: 32921582 [TBL] [Abstract][Full Text] [Related]
11. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. McKenna J; Kapfhamer D; Kinchen JM; Wasek B; Dunworth M; Murray-Stewart T; Bottiglieri T; Casero RA; Gambello MJ Hum Mol Genet; 2018 Jun; 27(12):2113-2124. PubMed ID: 29635516 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift. Medvetz D; Priolo C; Henske EP Mol Cancer Res; 2015 Jan; 13(1):3-8. PubMed ID: 25298408 [TBL] [Abstract][Full Text] [Related]
13. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Hino O; Kobayashi T Cancer Sci; 2017 Jan; 108(1):5-11. PubMed ID: 27862655 [TBL] [Abstract][Full Text] [Related]