BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30728368)

  • 1. The Siberian wood frog survives for months underwater without oxygen.
    Berman DI; Bulakhova NA; Meshcheryakova EN
    Sci Rep; 2019 Jan; 9(1):13594. PubMed ID: 30728368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological ecology of aquatic overwintering in ranid frogs.
    Tattersall GJ; Ultsch GR
    Biol Rev Camb Philos Soc; 2008 May; 83(2):119-40. PubMed ID: 18429765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica.
    Costanzo JP
    J Comp Physiol B; 2019 Feb; 189(1):1-15. PubMed ID: 30390099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frogs and turtles: different ectotherm overwintering strategies.
    Penney DG
    Comp Biochem Physiol A Comp Physiol; 1987; 86(4):609-15. PubMed ID: 2882889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic response of the Siberian wood frog Rana amurensis to extreme hypoxia.
    Shekhovtsov SV; Bulakhova NA; Tsentalovich YP; Zelentsova EA; Yanshole LV; Meshcheryakova EN; Berman DI
    Sci Rep; 2020 Sep; 10(1):14604. PubMed ID: 32884088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ecology of overwintering among turtles: where turtles overwinter and its consequences.
    Ultsch GR
    Biol Rev Camb Philos Soc; 2006 Aug; 81(3):339-67. PubMed ID: 16700968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.
    Sinclair BJ; Stinziano JR; Williams CM; Macmillan HA; Marshall KE; Storey KB
    J Exp Biol; 2013 Jan; 216(Pt 2):292-302. PubMed ID: 23255194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance.
    Larson DJ; Middle L; Vu H; Zhang W; Serianni AS; Duman J; Barnes BM
    J Exp Biol; 2014 Jun; 217(Pt 12):2193-200. PubMed ID: 24737762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog.
    Costanzo JP; do Amaral MC; Rosendale AJ; Lee RE
    J Exp Biol; 2013 Sep; 216(Pt 18):3461-73. PubMed ID: 23966588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic Profiling Reveals Differences in Hypoxia Response between Far Eastern and Siberian Frogs.
    Shekhovtsov SV; Bulakhova NA; Tsentalovich YP; Zelentsova EA; Osik NA; Meshcheryakova EN; Poluboyarova TV; Berman DI
    Animals (Basel); 2023 Oct; 13(21):. PubMed ID: 37958105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians.
    Storey KB; Storey JM
    Comp Biochem Physiol A Comp Physiol; 1986; 83(4):613-7. PubMed ID: 2870854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The data on helminth infestation of the Siberian tree frog (Rana amurensis Boulenger, 1886) in the western boundary of the range].
    Zhigileva ON; Kirina IIu
    Parazitologiia; 2014; 48(2):165-9. PubMed ID: 25272465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Long-Term Hypoxia on the Antioxidant Defense System in the Siberian Frog Rana amurensis.
    Shekhovtsov SV; Vorontsova YL; Slepneva IA; Smirnov DN; Khrameeva EE; Shatunov A; Poluboyarova TV; Bulakhova NA; Meshcheryakova EN; Berman DI; Glupov VV
    Biochemistry (Mosc); 2024 Mar; 89(3):441-450. PubMed ID: 38648764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs.
    Holden CP; Storey KB
    J Comp Physiol B; 1997 May; 167(4):305-12. PubMed ID: 9203370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo assembly and analysis of the transcriptome of the Siberian wood frog Rana amurensis.
    Smirnov DN; Shekhovtsov SV; Shipova AA; Gazizova GR; Shagimardanova EI; Bulakhova NA; Meshcheryakova EN; Poluboyarova TV; Khrameeva EE; Peltek SE; Berman DI
    Vavilovskii Zhurnal Genet Selektsii; 2022 Feb; 26(1):109-116. PubMed ID: 35342853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation.
    Amburgey SM; Miller DAW; Campbell Grant EH; Rittenhouse TAG; Benard MF; Richardson JL; Urban MC; Hughson W; Brand AB; Davis CJ; Hardin CR; Paton PWC; Raithel CJ; Relyea RA; Scott AF; Skelly DK; Skidds DE; Smith CK; Werner EE
    Glob Chang Biol; 2018 Jan; 24(1):439-454. PubMed ID: 28833972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of cold tolerance in fifteen springtail species.
    Holmstrup M
    J Therm Biol; 2018 Oct; 77():1-6. PubMed ID: 30196888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog.
    Sullivan KJ; Storey KB
    Cryobiology; 2012 Jun; 64(3):192-200. PubMed ID: 22301420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes.
    Sokolova IM; Pörtner HO
    J Exp Biol; 2003 Jan; 206(Pt 1):195-207. PubMed ID: 12456709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog.
    Hawkins LJ; Wang M; Zhang B; Xiao Q; Wang H; Storey KB
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():1-13. PubMed ID: 30710892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.