These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3072839)

  • 41. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D.
    Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL
    Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Serine proteinases of lower vertebrates].
    Kolodzeĭskaia MV
    Ukr Biokhim Zh (1978); 1986; 58(2):90-104. PubMed ID: 3518174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A systematic series of synthetic chromophoric substrates for aspartic proteinases.
    Dunn BM; Jimenez M; Parten BF; Valler MJ; Rolph CE; Kay J
    Biochem J; 1986 Aug; 237(3):899-906. PubMed ID: 3541904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel intracellular acid proteinase from the plasmodia of a true slime mold, Physarum polycephalum.
    Murakami-Murofushi K; Takahashi T; Murofushi H; Takahashi K
    Adv Exp Med Biol; 1995; 362():565-8. PubMed ID: 8540373
    [No Abstract]   [Full Text] [Related]  

  • 45. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 46. Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases.
    Phylip LH; Richards AD; Kay J; Kovalinka J; Strop P; Blaha I; Velek J; Kostka V; Ritchie AJ; Broadhurst AV
    Biochem Biophys Res Commun; 1990 Aug; 171(1):439-44. PubMed ID: 2203349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Carboxylic proteinases from the microscopic fungi Trichoderma viride and Trichoderma lignorum].
    Gaĭda AV; Osterman AL; Rudenskaia GN; Stepanov VM
    Biokhimiia; 1981 Jan; 46(1):181-9. PubMed ID: 7018591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases.
    Tözsér J; Zahuczky G; Bagossi P; Louis JM; Copeland TD; Oroszlan S; Harrison RW; Weber IT
    Eur J Biochem; 2000 Oct; 267(20):6287-95. PubMed ID: 11012683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of potent aspartic protease inhibitors to treat various diseases.
    Nguyen JT; Hamada Y; Kimura T; Kiso Y
    Arch Pharm (Weinheim); 2008 Sep; 341(9):523-35. PubMed ID: 18763714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteases and the emerging role of protease inhibitors in prohormone processing.
    Hook VY; Azaryan AV; Hwang SR; Tezapsidis N
    FASEB J; 1994 Dec; 8(15):1269-78. PubMed ID: 8001739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling.
    Majer F; Pavlícková L; Majer P; Hradilek M; Dolejsí E; Hrusková-Heidingsfeldová O; Pichová I
    Biol Chem; 2006 Sep; 387(9):1247-54. PubMed ID: 16972793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracellular aspartic proteinases from Candida yeasts.
    Fusek M; Smith E; Foundling SI
    Adv Exp Med Biol; 1995; 362():489-500. PubMed ID: 8540363
    [No Abstract]   [Full Text] [Related]  

  • 53. The interaction of aspartic proteinases with naturally-occurring inhibitors from actinomycetes and Ascaris lumbricoides.
    Valler MJ; Kay J; Aoyagi T; Dunn BM
    J Enzyme Inhib; 1985; 1(1):77-82. PubMed ID: 3916913
    [No Abstract]   [Full Text] [Related]  

  • 54. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor.
    Katoh I; Yasunaga T; Ikawa Y; Yoshinaka Y
    Nature; 1987 Oct 15-21; 329(6140):654-6. PubMed ID: 2821409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteinases in chronic lung infection.
    Stockley RA; Hill SL; Burnett D
    Ann N Y Acad Sci; 1991; 624():257-66. PubMed ID: 2064226
    [No Abstract]   [Full Text] [Related]  

  • 57. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 58. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity.
    Shearman MS; Beher D; Clarke EE; Lewis HD; Harrison T; Hunt P; Nadin A; Smith AL; Stevenson G; Castro JL
    Biochemistry; 2000 Aug; 39(30):8698-704. PubMed ID: 10913280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current approaches to targeting cancer using antiangiogenesis therapies.
    Scott PA; Harris AL
    Cancer Treat Rev; 1994 Oct; 20(4):393-412. PubMed ID: 7525058
    [No Abstract]   [Full Text] [Related]  

  • 60. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.