These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 3072898)
1. Mitochondrial function in normal and genetically altered cells and tissues. Chance B; Waterland RA; Tanaka A; Poyton RO Ann N Y Acad Sci; 1988; 550():360-73. PubMed ID: 3072898 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus magnetic resonance spectroscopy studies of the role of mitochondria in the disease process. Chance B; Leigh JS; Smith DS; Nioka S; Clark BJ Ann N Y Acad Sci; 1986; 488():140-53. PubMed ID: 3472482 [TBL] [Abstract][Full Text] [Related]
3. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. Valkovič L; Chmelík M; Just Kukurová I; Jakubová M; Kipfelsberger MC; Krumpolec P; Tušek Jelenc M; Bogner W; Meyerspeer M; Ukropec J; Frollo I; Ukropcová B; Trattnig S; Krššák M NMR Biomed; 2014 Nov; 27(11):1346-52. PubMed ID: 25199902 [TBL] [Abstract][Full Text] [Related]
5. Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Traba J; Satrústegui J; del Arco A Mitochondrion; 2009 Apr; 9(2):79-85. PubMed ID: 19460304 [TBL] [Abstract][Full Text] [Related]
6. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Chance B; Leigh JS; Kent J; McCully K; Nioka S; Clark BJ; Maris JM; Graham T Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9458-62. PubMed ID: 3467315 [TBL] [Abstract][Full Text] [Related]
7. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression. Müller V; Basset G; Nelson DR; Klingenberg M Biochemistry; 1996 Dec; 35(50):16132-43. PubMed ID: 8973185 [TBL] [Abstract][Full Text] [Related]
8. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption. van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria. Wilson DF; Harrison DK; Vinogradov A J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517 [TBL] [Abstract][Full Text] [Related]
10. Effect of enzyme deficiencies on oxidative phosphorylation: from isolated mitochondria to intact tissues. Theoretical studies. Korzeniewski B Mol Biol Rep; 2002; 29(1-2):197-202. PubMed ID: 12241057 [TBL] [Abstract][Full Text] [Related]
11. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. Wilson DF; Vinogradov SA J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518 [TBL] [Abstract][Full Text] [Related]
13. Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study. Khushu S; Rana P; Sekhri T; Sripathy G; Tripathi RP Magn Reson Imaging; 2010 Jun; 28(5):683-9. PubMed ID: 20332062 [TBL] [Abstract][Full Text] [Related]
14. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
15. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae. Beattie DS; Clejan L Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830 [TBL] [Abstract][Full Text] [Related]
16. Value of dynamic ³¹P magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes. Wu FY; Tu HJ; Qin B; Chen T; Xu HF; Qi J; Wang DH Chin Med J (Engl); 2012 Jan; 125(2):281-6. PubMed ID: 22340560 [TBL] [Abstract][Full Text] [Related]
17. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Chance B; Leigh JS; Clark BJ; Maris J; Kent J; Nioka S; Smith D Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8384-8. PubMed ID: 3866229 [TBL] [Abstract][Full Text] [Related]
18. In vivo phosphorus-31 nuclear magnetic resonance saturation transfer studies of adenosinetriphosphatase kinetics in Saccharomyces cerevisiae. Alger JR; den Hollander JA; Shulman RG Biochemistry; 1982 Jun; 21(12):2957-63. PubMed ID: 6213261 [TBL] [Abstract][Full Text] [Related]
19. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thompson CH; Davies RJ; Kemp GJ; Taylor DJ; Radda GK; Rajagopalan B Thorax; 1993 May; 48(5):486-90. PubMed ID: 8322233 [TBL] [Abstract][Full Text] [Related]
20. The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae. Prieto S; Bouillaud F; Rial E Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):657-61. PubMed ID: 7741693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]