These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30729305)

  • 1. Climatic determinants impacting the distribution of greenness in China: regional differentiation and spatial variability.
    Jiao K; Gao J; Wu S
    Int J Biometeorol; 2019 Apr; 63(4):523-533. PubMed ID: 30729305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal differences in climate change impacts on vegetation cover in China from 1982 to 2015.
    Jin K; Wang F; Zong Q; Qin P; Liu C; Wang S
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10263-10276. PubMed ID: 34519006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].
    Zhang YD; Zhang XH; Liu SR
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):323-30. PubMed ID: 21608242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Pla-teau, China.].
    Yang D; Yi GH; Zhang TB; Li JJ; Qin YB; Wen B; Liu ZY
    Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1361-1372. PubMed ID: 33899405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001-2013 based on MODIS data.
    Wu Y; Tang G; Gu H; Liu Y; Yang M; Sun L
    Sci Total Environ; 2019 Feb; 653():536-546. PubMed ID: 30414583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015.
    Chu H; Venevsky S; Wu C; Wang M
    Sci Total Environ; 2019 Feb; 650(Pt 2):2051-2062. PubMed ID: 30290347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).
    Prasad VK; Anuradha E; Badarinath KV
    Int J Biometeorol; 2005 Sep; 50(1):6-16. PubMed ID: 15902506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
    Krishnaswamy J; John R; Joseph S
    Glob Chang Biol; 2014 Jan; 20(1):203-15. PubMed ID: 23966269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.
    Jiang R; Xie J; He H; Kuo CC; Zhu J; Yang M
    Int J Biometeorol; 2016 Sep; 60(9):1389-403. PubMed ID: 26768143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Impacts of Climate Change and Human Activities on NDVI Change in Eastern Coastal Areas of China].
    Jin YS; Jin K; Wang F; Liu CX; Qin P; Zong QL; Liu PR; Chen ML
    Huan Jing Ke Xue; 2023 Jun; 44(6):3329-3342. PubMed ID: 37309951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China.
    Yu H; Bian Z; Mu S; Yuan J; Chen F
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China.
    Wen Z; Wu S; Chen J; Lü M
    Sci Total Environ; 2017 Jan; 574():947-959. PubMed ID: 27665454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifaceted responses of vegetation to average and extreme climate change over global drylands.
    He L; Guo J; Yang W; Jiang Q; Chen L; Tang K
    Sci Total Environ; 2023 Feb; 858(Pt 2):159942. PubMed ID: 36343828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).
    Cui L; Wang L; Singh RP; Lai Z; Jiang L; Yao R
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21867-21878. PubMed ID: 29796889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing vegetation health dynamics across seasons and regions through NDVI and climatic variables.
    Mehmood K; Anees SA; Muhammad S; Hussain K; Shahzad F; Liu Q; Ansari MJ; Alharbi SA; Khan WR
    Sci Rep; 2024 May; 14(1):11775. PubMed ID: 38783048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Using geographical detection to analyze responses of vegetation growth to climate change in the Loess Pla-teau, China].
    He P; Bi RT; Xu LS; Wang JS; Cao CB
    Ying Yong Sheng Tai Xue Bao; 2022 Feb; 33(2):448-456. PubMed ID: 35229519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data.
    Lamchin M; Lee WK; Jeon SW; Wang SW; Lim CH; Song C; Sung M
    Sci Total Environ; 2018 Mar; 618():1089-1095. PubMed ID: 29100696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variation characteristics of NDVI and its response to climatic change in the growing season of Changbai Mountain Nature Reserve during 2001 and 2018].
    Zhang Y; Yuan FH; Wang AZ; Guan DX; Dai GH; Wu JB
    Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1213-1222. PubMed ID: 32530196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. China's deserts greening and response to climate variability and human activities.
    Liu X; Xin L
    PLoS One; 2021; 16(8):e0256462. PubMed ID: 34460859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Vegetation cover change and its response to climate change on the Loess Plateau, Northwest China based on ICEEMDAN method].
    Sun QQ; Liu C; Zheng BJ
    Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2129-2137. PubMed ID: 34212619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.